High Speed Rolling Stock in Japan

Naoto YANASE
Japan Railways Group Paris Office, Deputy Director
UIC High Speed, Senior Advisor
PARIS, FRANCE
Contents

- Introduction of UIC Report “Necessity of future high speed rolling stock”

- Introduction of Shinkansen rolling stock
 - Basic idea and variety

- Features of Shinkansen rolling stock for
 - Safe, Reliable, Comfortable, Convenient Transportation

- Maintenance

- Closing remarks
Aim:
Show general overview of issues which should be taken into account for future high speed rolling stock under the changing business and technical situations from a global perspective

Report structure
1 General Issue (mainly in Business aspects)
 Development, Procurement, Approval, Deployment, Maintenance, Life Cycle Cost, RAMS (Reliability, Availability, Maintenability, Safety), Standardization, Compatibility with infrastructure
2 Basic technical aspects
 Dimensions, Performance, Safety, Environment, Aerodynamics, Comfort
3 Commercial and human factors
 Ergonomics, PRM, Drivers cab, Cabin, Services
4 Other technical aspects
 Body structure, Power/Brake system, Train control, Others

UIC member will soon be able to refer to this report
World High Speed Rolling Stock table can be referred to by all people
http://www.uic.org/
Basic idea of Shinkansen rolling stock design

- High Speed dedicated infrastructure aimed at high speed, high capacity, and high level of safety like
 - Large curve radius
 - Less gradient
 - No level crossing
 - In-cab signaling (ATC)
 - Large loading gauge etc.

Rolling stock was designed as part of total HSR system

- Distributed power (Electric Multiple Unit) for
 - Light axle load
 - Low construction/maintenance cost of infrastructure
 - Low ground vibration emission etc
 - High adhesion performance
 - Capable of high acceleration/deceleration
 - "Multiple unit"=Robust against failure

Rolling stock aimed at better operational performance

- Currently the variety has increased to meet customer/operational needs
 Interoperable rolling stock to conventional line (smaller loading gauge),…
<table>
<thead>
<tr>
<th>Line</th>
<th>Section</th>
<th>Length (mile)</th>
<th>Max. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokaido</td>
<td></td>
<td>343.4</td>
<td>168</td>
</tr>
<tr>
<td>Sanyo</td>
<td></td>
<td>400.2</td>
<td>187</td>
</tr>
<tr>
<td>Tohoku</td>
<td></td>
<td>392.6</td>
<td>171</td>
</tr>
<tr>
<td>Joetsu</td>
<td></td>
<td>188.6</td>
<td>150</td>
</tr>
<tr>
<td>Nagano</td>
<td></td>
<td>72.9</td>
<td>162</td>
</tr>
<tr>
<td>Kyushu</td>
<td></td>
<td>85.5</td>
<td>162</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>1483.3</td>
<td></td>
</tr>
<tr>
<td>Akita</td>
<td></td>
<td>79.1</td>
<td>81</td>
</tr>
<tr>
<td>Yamagata</td>
<td></td>
<td>92.3</td>
<td>81</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>171.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1654.7</td>
<td></td>
</tr>
</tbody>
</table>

*Length: mileage in revenue service

Converted from narrow gauge to standard gauge
Structure of Shinkansen traffic

Network is expanding, environment is changing

Northbound from Tokyo:
 Traffic is as a tree structure of which the root is thick
 • Destinations are smaller cities
 • Smaller population density along the line
 • Large density in Tokyo metropolitan area
 • Branch lines including converted conventional gauge line

 Tend to have wide variety of rolling stock depending on the demand

West bound from Tokyo:
 Traffic is almost stable on the entire line
 • Destinations are large cities
 • Chain of large cities along the line

 Tend to have rolling stock with unique specification
Variety of Shinkansen rolling stock operated in Japan

<table>
<thead>
<tr>
<th>Series</th>
<th>Number of cars in a set</th>
<th>Year in service</th>
<th>Max speed (km/h)</th>
<th>Passenger capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6 or 4</td>
<td>1985-</td>
<td>220</td>
<td>394 (6)</td>
</tr>
<tr>
<td>300</td>
<td>16</td>
<td>1992-</td>
<td>270</td>
<td>1323</td>
</tr>
<tr>
<td>500</td>
<td>16 or 8</td>
<td>1996-</td>
<td>300</td>
<td>1324 (16)</td>
</tr>
<tr>
<td>700</td>
<td>16</td>
<td>1998-</td>
<td>285</td>
<td>1323</td>
</tr>
<tr>
<td>700-7000</td>
<td>8</td>
<td>2000-</td>
<td>285</td>
<td>571</td>
</tr>
<tr>
<td>N700</td>
<td>16</td>
<td>2007-</td>
<td>300</td>
<td>1323</td>
</tr>
<tr>
<td>800</td>
<td>6</td>
<td>2004-</td>
<td>260</td>
<td>392</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>1982-</td>
<td>240</td>
<td>762</td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td>1992-</td>
<td>240</td>
<td>399</td>
</tr>
<tr>
<td>E1</td>
<td>12</td>
<td>1994-</td>
<td>240</td>
<td>1235</td>
</tr>
<tr>
<td>E2</td>
<td>8</td>
<td>1997-</td>
<td>275</td>
<td>630</td>
</tr>
<tr>
<td>E2-1000</td>
<td>10</td>
<td>2002-</td>
<td>275</td>
<td>814</td>
</tr>
<tr>
<td>E3</td>
<td>6</td>
<td>1997-</td>
<td>275</td>
<td>338</td>
</tr>
<tr>
<td>E3-1000</td>
<td>7</td>
<td>1999-</td>
<td>275</td>
<td>402</td>
</tr>
<tr>
<td>E3-2000</td>
<td>7</td>
<td>2008-</td>
<td>275</td>
<td>394</td>
</tr>
<tr>
<td>E4</td>
<td>8</td>
<td>1997-</td>
<td>240</td>
<td>817</td>
</tr>
</tbody>
</table>

Source: UIC "World high speed rolling stock"
Example of the variety of Shinkansen series

Three typical types of Shinkansen rolling stock for NORTHBOUND

- Fast and high capacity transportation on main lines
- Fast and capable of through operation to converted conventional lines
- Highest capacity for commuter transport

Series E2 (E2-1000)
“Standard” type

Series E3
Mini-Shinkansen type

Series E4
Double decker type

Based on similar technical concept to the west bound rolling stock
Comparison of typical rolling stock for northbound

<table>
<thead>
<tr>
<th></th>
<th>E2-1000</th>
<th>E3</th>
<th>E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
</tr>
<tr>
<td>Train Configuration (train length)</td>
<td>8M2T (251m)</td>
<td>4M2T (128m)</td>
<td>4M4T (201m)</td>
</tr>
<tr>
<td>Capacity</td>
<td>814</td>
<td>338</td>
<td>817</td>
</tr>
<tr>
<td>Capacity /m</td>
<td>3.24</td>
<td>2.56</td>
<td>4.06</td>
</tr>
<tr>
<td>Approx. Max. axle load (loaded)</td>
<td>13.2t</td>
<td>12.2t</td>
<td>16t</td>
</tr>
<tr>
<td>Max. operating speed</td>
<td>171mph</td>
<td>171mph (81mph on conventional)</td>
<td>149mph</td>
</tr>
<tr>
<td>Intermediate Car length</td>
<td>25m</td>
<td>20.5m</td>
<td>25m</td>
</tr>
<tr>
<td>Body width</td>
<td>3380mm</td>
<td>2945mm</td>
<td>3380mm</td>
</tr>
<tr>
<td>Motor power (continuous)</td>
<td>300kW</td>
<td>300kW</td>
<td>420kW</td>
</tr>
<tr>
<td>Coupling with (in normal operation)</td>
<td>E3</td>
<td>E2</td>
<td>E4 (E3-1000, 2000, 400)</td>
</tr>
<tr>
<td>Electrical system</td>
<td>AC25kV50Hz</td>
<td>AC25kV50Hz</td>
<td>AC25kV50Hz</td>
</tr>
<tr>
<td>Signalling system</td>
<td>DS-ATC</td>
<td>DS-ATC, ATS-P</td>
<td>DS-ATC</td>
</tr>
<tr>
<td>Year in operation</td>
<td>2002</td>
<td>1997</td>
<td>1997</td>
</tr>
</tbody>
</table>
Features of Shinkansen rolling stock

- Large loading gauge
 - High capacity
 - 5 seats/row, easier application of double decker
 - High comfort by larger space

- Light maximum axle load
 - Around 11-13 ton for single deck Shinkansen
 - Distributed power
 - Heavy components are distributed
 - Reduction of total weight
 - Light weight car body
 - Body shell, bogie, components,…
 - Structural strength against collisions can be reduced because of dedicated track
 - Light weight will also reduce the energy consumption!

Mini-shinkansen has a smaller (same as conventional) loading gauge
Features of Shinkansen rolling stock

- Distributed power (Electric Multiple Unit)
 - Light axle load
 - High rail/wheel adhesion performance
 - High acceleration/deceleration
 - Effective especially in case of slippery situation
 - Large passenger capacity without locomotive
 - "Multiple unit" = Robust against the failure

Ex. Series E2-1000

In case of failure of one unit
Main circuit failure: train runs by the rest of units
Auxiliary unit failure: service power is provided from other units
Features of Shinkansen rolling stock

- **Basic body design**
 - Double skin aluminum alloy body in latest cars
 - Easy construction (possible to lower cost)
 - Stiff but light weight
 - Air tight body with continuous ventilation system
 - Avoiding internal pressure fluctuation in cabin
 - No standard strength value for collision
 - Mini-Shinkansen type is designed under consideration of level crossing collision
 - …

- **Cabin design**
 - Every seat assures an outside view through the window
 - Rotating seat
 - Flatness of platform and cabin floor
 - Easy access for PRM (must be compatible with infrastructure)
 - …
 - No bistro car but catering space

Cabin design strongly depends on customer needs!
Features of Shinkansen rolling stock

- **Body design for environment**
 - Tunnel micro pressure wave reduction
 - Optimized nose shape

- **Line side noise reduction**
 - Measures for aerodynamic noise
 - Pantograph (smooth design, reduction of the number in a set, …)
 - Smooth surface of the train (cover at car gaps and so on, …)
 - Positive effect on reduction of aerodynamic resistance
 - Reduction of energy consumption
 - Reduction of noise from electrical and mechanical components

Design must be combined with infrastructure measures.
Measures depend on the local standard.
Japan strongly needs noise reduction because Shinkansen runs in residential area.
Features of Shinkansen rolling stock

- **Bogie design**
 - Safety running is assured with
 - Light weight structure (bolster-less type)
 - High level of ride comfort
 - Difference between Shinkansen and Mini-Shinkansen
 - Wheel base, Wheel profile, … compatible with infrastructure

- **Active suspension**
 - Reduce lateral vibration of car body by actuators to increase riding comfort

- **Tilting system by air suspension control**
 - Adopted on newest cars to allow increased speed on curves while maintaining riding comfort
Features of Shinkansen rolling stock

- Main circuit system
 - VVVF control, Induction motor
 - Low maintenance, energy efficiency mainly by regenerative brake
 - Compact package is necessary especially for distributed powered train

- Train on-board information control system
 - Important function can be controlled by back-up system
 - Compatible with traffic control system

Display for the driver

Transmitted by Digital Wireless Radio

Supporting for emergency in trouble

Dispatchers' Room
Features of Shinkansen rolling stock

- **Braking system**
 - Mixture of *regenerative brake* and mechanical brake
 - Maximize energy efficiency
 - Reduction of wear of braking pad
 - Back-up by the mechanical brake in case of failure or shortage of regenerative brake

- **Three brakes**
 - Service brake
 - Activated automatically by ATC or manually by the driver
 - Emergency brake
 - Activated automatically by ATC or manually by the driver in case of emergency situation
 - Braking force is increased from maximum value of service brake
 - Urgent brake
 - Automatically activated in case of accidental decoupling. etc.
Reduction of train operation energy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Train set configuration</td>
<td>16-car configuration (16M)</td>
<td>10-car configuration (8M2T)</td>
</tr>
<tr>
<td>Train weight</td>
<td>970t/16cars (loaded)</td>
<td>442t/10cars (unloaded)</td>
</tr>
<tr>
<td></td>
<td>[Avg. 60.6t/car (loaded)]</td>
<td>[Avg. 49.6t/car (loaded)]</td>
</tr>
<tr>
<td>Max. axle load</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Power control system</td>
<td>Continuous thyristor phase control</td>
<td>VVVF inverter control</td>
</tr>
<tr>
<td>Braking system</td>
<td>Rheostatic braking</td>
<td>Regenerative braking</td>
</tr>
</tbody>
</table>

Energy consumption (10-car equivalence estimate) -40%

-18%
Features of Shinkansen rolling stock

- Safety system is designed to:
 - Reduce human errors
 - Assure safety by automated system
 - Apply fail-safe concept
- ATC in-cab signalling system
 - Digital ATC
 Digital ATC has been modified from conventional ATC system
 - to increase the capacity of lines
 - to improve riding comfort
- Redundancy by multiplexing on-board system for safety and reliability
Features of Shinkansen rolling stock

- Coupling system (used in northbound Shinkansen)

- Fast and reliable system was developed to fit operation needs.

- Separating time: 2.5min
- Coupling time: 1.5min

<Tokyo ~ Morioka>
- Coupled operation of Series E2 & E3

<Morioka ~ Akita>
- Series E3 operation
- Operating speed: 130 km/h
 (converted conventional line)

Tokyo ~ Morioka ~ Akita ~ Hachinohe
Features of Shinkansen rolling stock

- Measures for natural conditions
 - Earthquake
 - Niigata Chuetsu Earthquake (2005)
 - Measures have been applied to avoid catastrophe after derailment (JR East case)
 - Earthquake measures are combined with infrastructure (earthquake detection system, anti-derailment measure on infrastructures)
 - Snow (mainly for northern bound Shinkansen)
 - Researching to avoid adhesion to the body
 Detached snow may hit the ballast
 - Snowproofing components
 - Snow plow

Measures should be combined with infrastructure measures
Elements to be taken into account strongly depend on the natural condition of the country humidity, high or low temperature, …
Maintenance

Preventive maintenance

<table>
<thead>
<tr>
<th>Maintenance Level</th>
<th>Inspection Intervals</th>
<th>Daily Inspection</th>
<th>Regular Inspection</th>
<th>Bogie Inspection</th>
<th>Overall Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 days 30,000km (18,641mi)</td>
<td>2 days</td>
<td>1.5 year 600,000km (372,822mi)</td>
<td></td>
<td>3 years 1,200,000km (745,645mi)</td>
</tr>
</tbody>
</table>

- Daily inspection
 - Inspection of wear parts (pantograph strip, …), Refreshing water/waste …
- Regular inspection
 - Condition and function test, Inspection of important parts/components without decomposition (axle, …)
- Bogie inspection
 - Inspection of bogie parts by decomposition
- Overall inspection
 - Inspection of overall rolling stock by decomposition

Maintenance is managed by operators

Distribution of maintenance base

- Example of JR East case
 - (Total: 9 series, 131 sets)
Maintenance

- Reliability

Fluctuation in rolling stock failures (Data of JR East)
(Number of failures per 1 million kilometer (621,371 mile) over 1987~2000)

- High reliability assures high efficiency of train set use
 *The number of train sets can be kept to as few as possible!

Ex. Series E4 (JR East) case
Total number of train sets: 26 sets
 - In operation: 25 sets
 (including maintenance work)
 - Stand-by: 1 set

96.2% of train sets are always operated
Life Cycle

Life cycle
- From design to deployment
 - Normally 3-5 years (if new development is necessary, 3-5 more years should be added)
 - Design and development are **led by JR companies** with the close cooperation of rolling stock suppliers.

Usage
- Normally less than 20 years - shorter than European rolling stock mainly because of
 - Fatigue
 - Following the changing customer demand and operational demand
 - Introducing new technology to improve performance and reduce maintenance cost

- Maintenance is done by JR companies
- Some series have been given major modification (renovation) to lengthen the life

Retirement
- Material can be recycled
Example of latest commercial train (westbound)

Series N700

- Formation: 14M2T
- Max Speed: 300km/h (186.4mph)
- Pass. Capacity: 1323
- Train Weight: Approx. 700t (loaded)
- Train length: 404.7m
- Power system: 25kV60Hz
 VVVF Control
 Induction Motor
- Signalling: Digital ATC
- Low noise structure
- Air suspension tilting
- Active suspension
- 10.7m aerodynamic nose for reduction of Tunnel Micro Pressure Wave

✓ Aimed at reducing travel time on Tokaido and Sanyo line by increasing speed at curve and high acceleration.
✓ Integration of high speed, quality riding comfort and environmental compatibility
✓ Commercial operation started in 2007.
Series E5 (being tested for commercial use)

- Aimed to reduce travel time on Tohoku line by increasing maximum speed.
- Research and development has been conducted by the operator (JR East) between 2002 and 2009. Tests had been conducted through dedicated experimental train sets.
- Commercial operation will start in 2011 at 300km/h.

<table>
<thead>
<tr>
<th>Formation</th>
<th>8M2T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed</td>
<td>320km/h (198.8mph)</td>
</tr>
<tr>
<td>Pass. Capacity</td>
<td>731</td>
</tr>
<tr>
<td>Train Weight</td>
<td>453t (loaded)</td>
</tr>
<tr>
<td>Train length</td>
<td>250m</td>
</tr>
<tr>
<td>Power system</td>
<td>25kV50Hz VVVF Control (IGBT) Induction Motor</td>
</tr>
<tr>
<td>Signalling</td>
<td>DS-ATC</td>
</tr>
<tr>
<td>Noise absorber</td>
<td></td>
</tr>
<tr>
<td>Active suspension</td>
<td></td>
</tr>
<tr>
<td>Air suspension tilting</td>
<td></td>
</tr>
<tr>
<td>15m aerodynamic nose for reduction of Tunnel Micro Pressure Wave</td>
<td></td>
</tr>
</tbody>
</table>
Remarks

- Operators (JR companies) have intended to fit rolling stock to the market needs and social and natural situations.

- Operators have led development and improvement of rolling stock with close cooperation with suppliers as the responsible body of safe, stable, reliable, comfort, and convenient transportation under many technical constraints.

- This ‘Market-in’ style strongly affects Shinkansen rolling stock design.

- Rolling stock is only a part of total high speed rail system. The rolling stock should be designed as a part of total optimum system. Of course, it must be compatible with the infrastructure.
Thank you very much for your attention.