Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

APTA 2017 Rail Conference
Track 1: Forces, Noise, and Vibration
Baltimore, Maryland
12 June 2017

Alvaro E. Canga Ruiz, J. Riley Edwards, Yu Qian, and Marcus S. Dersch
Outline

• Background
• Problem Statement
• Objective and Approach
• Flexural Behavior Results
• Conclusions
• Future Work
Background

- **Light rail** is a commonly used mode of public transit in North America for in-city transportation.
- **Ballasted track** is the most frequent superstructure system used in railroads worldwide - *simple and efficient*.
- **Concrete** is 2nd most used material for crossties in the US (~5% of total) after timber – provides higher *system resiliency* and longer expected *life cycle*.
- Current design methodologies are based on practical experience.
- **Rail transit load** environment has not been *studied* in depth.
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Problem Statement

- Crossties behave as beams – flexural behavior governs
- **Mechanistic design approach of concrete crossties** is proposed by researchers at the University of Illinois
- Consider in service loads, real **field loading conditions** using field data collection as fundamental tool
- **Flexural performance** of crosstie largely dependent on support conditions (ballast reaction)
- Traditional design approach to limit crack opening in critical cross sections (C- and RS+)

![Diagram of rail seat and center with load application](image)
Objectives and Approach

- **Objectives:**
 - Understand the flexural behavior of crossties under rail transit loading conditions using field data collected under revenue service
 - Study the variability of moments as a function of rolling stock wheel loads
 - Use the bending moment characterization of transit systems for crosstie redesign
Light Rail Tangent Data

Trains in Dataset: 2,245
From 18 March 2016
to 26 April 2016

(Tangent Site)
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Track Geometry
St. Louis MetroLink Tangent Site

• Light rail system
• Tangent site
• Located in East St. Louis, IL
• Automated data collection
 (~154 trains/day (Red & Blue lines))
• Prestressed concrete crosstie: LB Foster CXT 100-06
 – Design capacity: C- 147 kip-in; RS+ 221 kip-in
• Measured speeds range from 26 mph to 52 mph
 (track speed 55 mph)
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

• Metrics to quantify:
 – **Crosstie bending strain** (crosstie moment design)
 – Rail displacements (fastening system design)
 – Vertical and lateral input loads (crosstie and fastening system design, and load environment characterization)
 – Crosstie temperature gradient

Typical Field Instrumentation Map

- Crosstie Bending Strain
- Vertical and Lateral Load (Wheel Loads)
- Rail Displacement (Base Vertical, Base Lateral)
- Rail Displacement (Base Vertical)
- Thermocouple
- Laser Trigger

(Ambient Temperature)
Data Processing Overview
Crosstie Bending

- **Desired data:**
 - Crosstie bending strains due to transit loads

- **Data collection and objective of data analysis:**
 - Surface strain gauges mounted along the chamfer of the crosstie
 - Understand revenue service bending moments and determine the support conditions for crossties
 - Assess the capacity and design of the manufacturer and the specifications given by rail transit agencies

Center and intermediate gauges
Rail seat gauge
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Center Negative Bending
St. Louis MetroLink

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)

-10 -5 0 5 10 15 20 25 30

-1 0 1 2 3

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Crosstie 1
Crosstie 2
Crosstie 3
Crosstie 4
Crosstie 5
Combined
Center Negative Bending
St. Louis MetroLink

Bending Moment (kNm)

Percent Exceeding

-10 -5 0 5 10 15 20 25 30

-1 0 1 2 3

Crosstie 1
Crosstie 2
Crosstie 3
Crosstie 4
Crosstie 5
Combined

Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Rail Seat Bending
St. Louis MetroLink – Gauge A

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Rail Seat Bending
St. Louis MetroLink – Gauge A

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)
Rail Seat Bending
St. Louis MetroLink – Gauge E

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)
Design Capacity Comparison

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)

Field Center Bending
MetroLink Spec Center
CXT 100 Design Capacity Center
Field Rail Seat Bending
MetroLink Spec Rail Seat
CXT 100 Design Capacity Rail Seat
Design Capacity Comparison

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)

- Field Center Bending
- Field Rail Seat Bending
- MetroLink Spec Center
- MetroLink Spec Rail Seat
- CXT 100 Design Capacity Center
- CXT 100 Design Capacity Rail Seat
Crosstie Reserve Capacity

<table>
<thead>
<tr>
<th>Percentile Bending Moment</th>
<th>Reserve Design Capacity = Design Capacity</th>
<th>Measured Bending Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center Negative</td>
<td>Rail Seat Positive</td>
</tr>
<tr>
<td>Minimum</td>
<td>82.48</td>
<td>43.11</td>
</tr>
<tr>
<td>Average</td>
<td>12.96</td>
<td>7.50</td>
</tr>
<tr>
<td>90%</td>
<td>9.25</td>
<td>5.41</td>
</tr>
<tr>
<td>95%</td>
<td>8.74</td>
<td>4.95</td>
</tr>
<tr>
<td>99%</td>
<td>8.05</td>
<td>4.16</td>
</tr>
<tr>
<td>Maximum</td>
<td>5.55</td>
<td>2.15</td>
</tr>
</tbody>
</table>

- Max recorded center bending moment (25 kip-inches) could be increased by a factor of **5.6** without reaching the design moment for the crosstie or the agency specifications.
- Max recorded rail seat positive bending moment (62 kip-inches) defines a potential reserve capacity of **2.2**.
Comparison with Design Standards

- Large amount of field data collected
 - 2245 train passes
 - 12 axles per train
 - 5 different ties
 - Dynamic input loads
- Field results compared with capacity required by design standards to understand current design procedures’ accuracy
- Current design standards use different assumptions: support conditions, rail seat load considerations
- Analyzed standards:
 - AREMA
 - Euronorm (EN) / International Union of Railways (UIC)
 - Australian Standard (AS)
Comparison with Design Standards

<table>
<thead>
<tr>
<th>AREMA*</th>
<th>Rail Seat Positive (RS+)</th>
<th>Center Negative (C-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **(a)**: w
- **(b)**: w, 0.61w, w
- **(c)**: w
- **(d)**: w
- **(e)**: w
- **(f)**: w

Methodology used until 2016
Comparison with Design Standards

Center Negative Bending Moment

Bending Moment (kNm)

Percent Exceeding

Bending Moment (kip-inches)

Field
AREMA
EN/UIC
AS
Comparison with Design Standards

Center Negative Bending Moment

![Graph showing comparison of bending moments with design standards.](image-url)
Comparison with Design Standards

Rail Seat Positive Bending Moment

Bending Moment (kNm)

- Field Rail Seat A
- Field Rail Seat E
- AREMA
- EN/UIC
- AS

Percent Exceeding

- 100%
- 80%
- 60%
- 40%
- 20%
- 0%

Bending Moment (kip-inches)
Comparison with Design Standards

Rail Seat Positive Bending Moment

![Graph showing comparison between different bending moment standards.]

- **Field Rail Seat A**
- **Field Rail Seat E**
- **AREMA**
- **EN/UIC**
- **AS**
Concrete Crossties Flexural Behavior Analysis under Light Rail Transit Loading Conditions

Bending Moments Conclusions

- Flexural reserve capacity was quantified for a light rail transit system (only revenue service, equipment not accounted)
- For current in-service design, excessive potential reserve capacity is found when compared to design capacity
- Minor variability in support conditions was observed between consecutive crossties
- Potential reserve capacity for center negative bending moment (5.6) is generally higher than for rail seat positive bending moment (2.2)
- Using field measured dynamic loads, analytical design approach used by standards do not match the on-site measured bending moments:
 - Overdesign for C-
 - Lack of capacity for RS+
Future Work

• Observe seasonal and environmental variations in track behavior (automated data collection)
• Bound support condition variability of the system
• Derive new analytical models that match better field results – propose new design assumptions
• Develop track monitoring tools to assess need for maintenance (resurfacing due to deteriorated support)
• Calibrate FE model with real field data
• Use this information to develop prototype
Acknowledgements

Funding for this research has been provided by:
- Federal Transit Administration (FTA)
- National University Rail Center (NURail Center)

Industry partnership and support has been provided by:
- American Public Transportation Association (APTA)
- New York City Transit (NYCTA)
- Metra (Chicago, Ill.)
- MetroLink (St. Louis, Mo.)
- TriMet (Portland, Ore.)
- Pandrol USA
- Progress Rail Services
- LBFoster, CXT Concrete Ties
- GIC Inc.
- Hanson Professional Services, Inc.
- Amtrak

Special thanks to MetroLink, NYCTA, and Union Pacific for providing access to their infrastructure for instrumentation.
Contact Information

Alvaro E. Canga Ruiz
Graduate Research Assistant
cangaru2@illinois.edu

J. Riley Edwards
Senior Lecturer and Research Scientist
jedward2@illinois.edu

Yu Qian
Research Engineer
yuqian1@illinois.edu

Marcus S. Dersch
Senior Research Engineer
mdersch2@illinois.edu