Implementation of Transit Signal Priority (TSP) and Preemption at Grade Crossings

Brett Higgins, P.E.
Jacobs Engineering
Traffic Engineer
Denver, CO

Shyam Bista, P.E.
LTK Engineering Services
Systems Engineer
Denver, CO
Overview

• Introduction
• Background
• Concept of Operations
• Transit Signal Priority (TSP)
• Outbound Train Progression
• Inbound Train Progression
• Summary
Introduction

- Denver RTD’s FasTracks Program
• I-225 or Aurora Rail Line
 - Extension of existing H Line: 10.5 miles
 - Addition of R Line
 - Eight new stations
Background

- I-225 Rail line is divided into Segment 1 and 2

- Segment 2 is further divided into Area A through Area G for ease of design and construction
• Area B (aka The Horseshoe) is further divided into Area B1 and B2
Area B1

- Spans from Exposition Ave & Abilene St to Sable Blvd & Exposition Ave

- Train travels with the flow of the automobile traffic through non-gated crossings

- Train travel is controlled by the traffic signal controller via bar signals
Area B2

- Spans from Sable Blvd & Exposition Ave to 2nd & Abilene Station

- There are three gated crossings along Sable Blvd north of Aurora Metro Center Station: Alameda, Commercial and Bayaud

- The segment from Metro Center Station to the Ellsworth Crossing was nicknamed “The Gauntlet”
• Alameda Ave
 - Six lane major arterial
 - Closely spaced coordinated signalized intersections from I-225 Interchange to Sable Blvd
 - Additional left and right turn lanes will be added resulting in a nine lane LRT crossing
 - Opening day (2016) Average Daily Traffic on Alameda Ave at the crossing is projected to be approximately 42,000 vehicles per day
Background

- Sable Blvd
 - Four lane minor arterial
 - Coordinated traffic signals
 - Opening day (2016) Average Daily Traffic on Sable Blvd at Alameda Ave is projected to be approximately 19,000 vehicles per day
Background

- Focal Point – Alameda Ave Crossing
 - Size of crossing (traffic volume and number of lanes)
 - High volume coordinated arterials
 - Required traffic signal progression to avoid severe impacts to traffic operations and safety concerns
Background

- Candidates for Traffic Signal Preemption
 - Alameda and Sable
 - Bayaud and Sable
- Recommendation from the 2009 Manual on Uniform Traffic Control Devices (MUTCD), Section 8C.10 states
 - “When a highway-LRT grade crossing equipped with a flashing-light signal system is located within 200 feet of an intersection or midblock location controlled by a traffic control signal, the traffic control signal should be provided with preemption in accordance with Section 4D.27.”
Background

• Traffic Signal Preemption
 - Intersection right-of-way transfer
 - Track clearance green phase to clear potentially queued automobiles from the track prior to gates descending
 - Prevents conflicting traffic signal phases from activating while the train occupies the crossing

• Traffic Signal Preemption Drawbacks
 - Random activation
 - Impacts to traffic progression
 - Potential for long traffic signal coordination recovery times
Concept of Operations

- Balance train and traffic operations
 - Minimize impact to traffic operations including signal coordination
 - Provide safe operations at the intersections and crossings
 - Controlled release of the train
 - Once the train is released, it continues without stopping through “The Gauntlet”.
 - Utilize transit signal priority with background preemption
Transit Signal Priority (TSP)

- TSP – An operational strategy that accommodates the movement of transit vehicles including light rail through signalized intersections.

- Passive TSP - the transit signal phase in a traffic signal is accounted for in the normal traffic signal cycle and operates continuously.

- Active TSP - the ability to shorten conflicting phases, extending non-conflicting phases, modify phase sequences and skip phases to serve the transit vehicle.

- Typically used for transit vehicles at signalized intersections without railroad grade crossings warning devices
Transit Signal Priority (TSP)

- TSP with Background Preemption
 - Utilizes TSP routines to mimic traditional traffic signal preemption.
 - Multiple TSP routines or “linked” priorities activated one after another.
 - Priority #1 - Right-of-Way (ROW) transfer and track clearance green phase.
 - Priority #2 - Dwell
 - Failsafe - A delayed background preemption routine can be activated after priority #2 expires to prevent the traffic signal from bringing up conflicting automobile phases while the gates are down.
Transit Signal Priority (TSP)

• Advantage

 – TSP routines exit back into the background coordinated traffic signal cycle.

 – For full priority within the traffic signal controllers being used on the I-225 Rail Line project, two options are available:

 o Option 1: Jump directly to the current location of the signal’s coordination timer.

 o Option 2: Go through offset transitions in the traffic signal cycle which could take up to three traffic signal cycles to get back into coordination.
Outbound Train Progression

Legend:
- Train Detected
- RR Warning Device Call
- Transit Signal Priority Call
TCC - Traffic Controller Cabinet
SB - Signal Bungalow
Inbound Train Progression

Legend:
- Train Detected
- RR Warning Device Call
- Transit Signal Priority Call
TCC - Traffic Controller Cabinet
SB - Signal Bungalow

Alameda/Sable Traffic Signal

“READY”
Summary

- Traffic signal preemption was determined to be problematic within “The Gauntlet” due to:
 - Randomness
 - The need to minimize disruption to traffic signal coordination and traffic flow
 - High traffic volume crossing at Alameda Ave
 - Long recovery time required for the traffic signal cycle to regain coordination

- The use of TSP was agreed to by stakeholders as a way to balance traffic and train operations while maintaining safe operations.

- Background preemption will be implemented as part of the failsafe system.

- Currently working towards final design.

- Bench testing will be performed to confirm the validity of the concept and design.
QUESTIONS?