Floating Slabtrack Systems in Tunnels

A case study with different FST systems

Metro Lisbon – Red Line Extension

Patrick Carels
CDM S.A.
Reutenbeek 9–11, B–3090 Overijse, Belgium

ABSTRACT:

Floating Slabtrack systems (aka FST) are to date known as the ultimate ground borne noise & vibration mitigation technology. The concept is based upon the simple and practical transcription of the vibration isolation theory by imposing a low tuned resonant frequency of a single degree of freedom system through engineered selection of (a) inertial mass (b) with or without flexural stiffness (c) supported by a resilient system with tuned stiffness characteristics, all to reduce the vibrations generated by passing trains with minimal effect on track stability (low rail deformations).

This paper describes the FST designs and related works within the framework of the Red Line extension (2008-2010) for Metro Lisboa (ML) in Portugal. The Red Line Tunnel extension passes though a part of the City with low background N&V ($v_{rms} < 10E^{-6}$ m/s) and close to buildings with severe vibration criteria. Considering these parameters, ML requested an in-depth study to make sure that the new line met the stringent N&V criteria. The study defined different N&V isolated track solutions. The interesting part of this project is that in a same project 2 different FST designs are implemented ranging: mats with adaptable stiffness and discrete supported systems (pads and strips). An extensive vibration measurement campaign allowed confronting design and reality with interesting conclusions for future FST design and performance control methodology in operation.

KEY WORDS: Vibration isolation; floating slab track.

INTRODUCTION

Floating Slabtrack Systems (aka FST) are to date known as the ultimate intervention technology to optimize mitigation of ground borne noise & vibration generated by rolling stock passage. The concept is based upon the simple and practical transcription of the vibration isolation theory by imposing a low tuned resonant frequency of a single degree of freedom system through engineered selection of (a) inertial mass (b) with or without flexural stiffness (c) supported by a resilient system with tuned stiffness characteristics, all to reduce the vibrations generated by passing trains with minimal effect on track stability (low rail deformations).

In the early days of noise & vibration control for public transport systems, there were essentially 2 track systems, one “standard track” (i.e. no vibration control measures) and one “isolated track” which was known at those days as the best solution, i.e. FST, which in many cases was an overkill. However as the technology advanced many vibration control systems came to the market. Nowadays there are many systems capable of meeting almost all vibration control requirements ranging from a few dBV’s to almost 40 dBV of insertion loss. Also FST technology advanced with use of elastomer pads, helical springs, resilient mats, resilient strips and FST with discrete concrete inertial blocks (with and without shear connectors) and with continuous concrete slabs.

FST is still known to be the “ultimate” technology to reach optimal insertion loss, but strangely enough, we don’t see important progress in the evolution of FST techniques. Lack of innovation in FST design, lack of system competition, and rigid material specifications,
mostly guided towards unique resilient materials, are in many cases the herald of non-competitive costs.

When looking in details at papers describing FST presented throughout worldwide technical literature, one rarely finds demises or negative experiences with FST (like e.g. ref [1]) – almost all are success stories. However, discussing in detail with permanent way owners (PWO) having experience with FST, one can indeed learn that apart from the success stories there are also failures, negative experiences with design concepts and resilient materials. The return on experience and the lesson drawn out of these failures has been rewarding for the profession and sure for the innovation to follow.

The FST systems described in this paper were based, unlike many tender specifications presently on the market, upon performance driven tender specifications allowing the bidding contractor to search for the best price/quality design to offer to the PWO, of course all within stringent RAMS specifications.

METRO LISBON RED LINE EXTENSION

This paper describes the FST designs and related works within the framework of the 2.21 km Red Line extension (construction period 2008-2010) for Metro Lisboa (ML) in Portugal. The Red Line Tunnel extension passes though a part of the city with low background N&V ($v_{rms} < 10$E-6 m/s) and close to buildings with severe N&V criteria.

Considering these parameters, ML requested in-depth study to make sure that the new line met the following N&V criteria:

- For residential houses: $v_{rms} < 30$E-6 m/s,
- For buildings within the Instituto Superior Técnico (IST) grounds, the equipment manufacturer recommended $v_{peak-to-peak}$ limits ranging from 1 to 5E-6 m/sec (for highly sensitive equipment). IST finally imposed that v_{rms} levels due to train passage may not exceed the background vibration levels.

See Figure 1 and Table 1 for a map of the city with indication of the Red Line Extension and description of the location of the different types of mitigation solutions.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential houses</td>
</tr>
<tr>
<td>2</td>
<td>Transition zone towards solution 3</td>
</tr>
<tr>
<td>3</td>
<td>IST grounds</td>
</tr>
</tbody>
</table>

Table 1 Location description of the different implemented solution types.

The interesting part of this project is that in a same project various FST designs are implemented ranging from (a) resilient mats with adaptable stiffness (Trackslab On Mats with Adaptable Stiffness aka TOMAS) to (b) discrete supported systems (pads and strips). An extensive vibration measurement campaign (see ref. [6]) allowed confronting design and reality with interesting conclusions for future FST design and a posterior control in operation.

Typical track cross sections of above FST designs are detailed in Figure 5 and Figure 6.

DEFINITION OF THE DIFFERENT FST SOLUTIONS

The General Outline

It is now state-of-the-art to design track vibration mitigation systems by use of the insertion loss (IL) philosophy. The essence of this philosophy is to compute a resulting dynamic engineering parameter (such as point mobility, force, ...) as output of certain mathematical model (such as FEM, multi-DOF,....) under unit dynamic force excitation and compare the results of different model set-ups with defined vibration mitigation systems with a reference system without vibration mitigation. The technique has evolved in the recent years and is now widely accepted and referred to in recent norms and guidelines (see e.g. Ref. [2] and Ref.[5]).
Specific Designs For ML

In order to come to solutions for the different ML FST solutions, the 4DOF model IL approach was used (see Ref.[2], Figure 3). The different solutions all consisted of a floating slab track (FST) supported by different support systems each characterised by the equivalent dynamic bedding module \(c_{\text{eq}} \) dyn-eq (unit [MN/m/m²]). The equivalent dynamic bedding module is obtained:

- For full surface mats: \(c_{\text{eq}} \) is the equivalent bedding module per trackslab surface unit \(([c_{\text{eq}}] = \text{MN/m/m}^2) \), which is the combination of all stiffness components acting in the vertical direction concentrated under the track slab surface \((S_v) \) being
 - Vertical stiffness of the mats on the horizontal surface per separate trackslab-length (Sh): \(c_{v,\text{Sh}} \) measured via compression testing on a 300x300 mm² sample further to specs imposed by the PWO and depending on imposed load window (like eg. DIN-45673/7-2010)
 - Vertical stiffness of the lateral isolation mats on the vertical upstands per separate trackslab-length (Sv): \(c_{v,Sv} \) mostly extrapolated from shear measurements on samples further to a predefined norm - \(c_{v,Sv} = [Sv^*G]/t \) (\(G = \) shear modulus, \(t = \) thickness of the mat)
 - Total equivalent bedding module is then:
 \[
 c_{\text{eq}} = [S_h^* c_{v,\text{Sh}} + S_v^* c_{v,Sv}]/S_h
 \]

- For discrete bearings: the equivalent bedding module per trackslab surface unit is the same combination of the stiffness components as defined for full surface mats, but the stiffness components are defined by discrete bearings with individual stiffness distributed over Sh and Sv.
 - Vertical stiffness of the discrete bearings \((C_{v,\text{Sh}}) \) distributed over the contact surface \(S_h \) providing on the horizontal surface per separate trackslab-length \((S_h) \):
 \[
 c_{v,\text{Sh}} = C_{v,\text{Sh}}^* \text{NHB},
 \]
 with NHB = # resilient bearings on contact surface Sh per surface unit
 - Vertical stiffness of the lateral bearings \((C_{v,Sv}) \) distributed over the total lateral contact (if any !!) surface (Sv) / vertical upstands per separate trackslab-length:
 \[
 c_{v,Sv} = C_{v,Sv}^* \text{NVB}
 \]
 with NVB = # resilient bearings on contact surface Sv per surface unit

- Recommended values for \(c_{v,Sv} \):
 For a safe and N&V optimised FST design, it is recommended to limit the stiffness component brought by the lateral support elements on upstands (lateral track stability!!) to < 10% of the stiffness component brought by the resilient elements below the slab
 \[
 c_{v,Sv} < 0.10^* S_h/S_v^* c_{v,\text{Sh}}
 \]

Typical Track Design And Model Parameters

- Rail 50E1 (U50)
- Booted twin block ties: \(C_{\text{stat, rail pad}} = 80 \text{ MN/m (dyn.180 MN/m)} \) - \(C_{\text{stat, sleeper pad}} = 10 \text{ MN/m (dyn.27 MN/m)} \)
- Distance between ties = 750 mm
- Axle load 100.8 kN (non-supported mass 15% of axle load)
- Axle/Axle distance: 2100 mm
- Smallest Bo/Bo distance: 11100 mm
- Typical 500 mm. Thick Reinforced Concrete (RC) slab with a width of 3750mm for solution 1 and 2750 mm for FST on discrete bearings (solutions 2 & 3)
- Resilient support systems for the slab each characterized by their specific equivalent bedding module (static and dynamic) see Table 2 for maximum equivalent dynamic bedding moduli
- Stiff tunnel invert
- Design speed 60 kph
- Maximum elevation 150 mm
- Minimum radius 100 m.

A typical ML track cross section is given in Figure 2.
As a result of the calculations using the 4DOF model (see Figure 3), the maximum equivalent dynamic bedding modules were defined to meet the N&V criteria. Table 2 gives an overview of the maximum equivalent dynamic bedding modules to be introduced in the different locations (see Figure 1 and Table 1).

Table 2. Maximum equivalent dynamic bedding modulus for the different mitigation solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>$c_{eq,dyn}$ (MN/m/m²)</th>
<th>Typical Resilient Support System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 17</td>
<td>CDM-TOMAS-M8/RR</td>
</tr>
<tr>
<td>2</td>
<td>< 18</td>
<td>CDM-FSP-M10/RR</td>
</tr>
<tr>
<td>3</td>
<td>< 7</td>
<td>CDM-FSP-M9/RR</td>
</tr>
</tbody>
</table>

Solution 1 – CDM-TOMAS Technology: Resilient Mats With Adaptable Stiffness

This technology (CDM-TOMAS – Trackslab On Mat with Adaptable Stiffness) is typically a hybrid solution between proper resilient surface mats (CDM-FSM) and discrete bearings techniques. It combines ease of installation as a surface mat (with integrated formwork) with the possibility to adapt and optimize the stiffness. From the range of CDM-TOMAS solutions was chosen CDM-TOMAS-M8, with $c_{eq,dyn} = 17$ MN/m/m² (including influence of vertical upstands).

Figure 4 shows the different steps of the production process.

A typical cross section of solution 1 is depicted in Figure 5.

RESILIENT SUPPORT MATERIALS DESCRIPTION

Resilient Material Choice

Based upon the last decade’s evolution in resilient material technology to be applied in difficult and harsh conditions in tunnels as to temperature, humidity and chemical environment, it was decided to use microcellular resilient materials from the CDM-RR-range (high quality resin bonded rubber granules), known for their better resistance to most common destructive agents found in tunnels (immersion, pH, temperature, etc.) with proven track record since late 1990’s (see eg. Ref. [1], Ref. [3], Ref.[4], Ref.[7]). In this particular project, there are essentially 2 technologies of FST resilient support systems used.

General description

This technology is probably the oldest known track vibration mitigation technology, because it is the technology allowing to reach the lowest possible equivalent bedding modules with adaptable stiffness (eg in curves with cant, transition zones, ...). The main disadvantage of this technology is the more complex installation process, the need for reinforcement of the concrete to span the distance between the different bearings and less lateral stability (need for lateral restraint bearings depending on type of resilient material and lateral loads at stake). For the ML-project, CDM-FSP/RR bearing pads were used. The track at the IST grounds (Solution 3) includes both straight (3A) and curved track (3B), designed with same equivalent dynamic bedding modulus.

A typical cross section and layout of solution 2 and 3 is depicted in Figure 6.

![Figure 6: Typical FST cross section and layout with CDM-FSP discrete bearings](image)

Figure 7 shows the details of the CDM-FSP bearings. The bearings were designed with water evacuation grooves at the bottom of the bearings and with an L-shaped upstand to lock them in place, left and right of the track slab. (Technology developed in the re-engineering process of Linha 3 – MSP see also ref. [1]).

![Figure 7: Details of FST with discrete AV bearings](image)

For the ML-project, prefabricated elements (length of 1.8m for solution 2 and 3A, 0.9m for solution 3B) were used to ease the installation of the track (see Figure 6). The AV bearings were distributed evenly (2 bearings every 1.8m for solution 2 and 3A, 0.9m for solution 3B) on the tunnel invert. The prefabricated concrete U-troughs (with reinforcement bars sticking out on the inside of concrete troughs) were laid down on top of the AV bearings. The classic ML bi-block track system was installed, the rails aligned, and the concrete poured inside the troughs to fix the bi-block system and to create one long continuous slab.

Access to the bearings has been foreseen, to allow inspection and eventual replacement of the bearings if necessary (see Figure 8).

![Figure 8: Details of access to the elastomer bearings](image)

Solution 2: Transition zone towards solution 3

Since the track resilience ratio between the FST zones and the typical standard ML track system is more than 2, there is need for a transition zone. The minimum length of the transition zone is further to UIC formula ($L=0.5 \times \text{design speed} = 8.5 \text{ m}$.). In the project the transition zone length was fixed to be 10 m. It was materialized at both limits of solution 3 zone, by elastomer bearing strips with same dimensions of 300x1250x50 mm with an adjustable stiffness. All these transition zones are in straight line. This floating slab is supported by resilient L-shaped strips 300x1250x50mm...
FSP, the inertia mass of the different density 2.5 t/m³. In the configuration of the floating slab, lateral stability calculations for solution 3 allow air circulation and allow installation of lifting equipment to replace the strips.

Solution 3A: FST on straight line

This FST is supported by:

- CDM-FSP-M9/RR system, bearings (300x1250x50mm) made from CDM-RR family (resin-bonded rubber), Distribution NHB = 0.4/m² (2 strips per 1.8 lmst and 2.75 m. width).
- Bedding module CDM-FSP-M9 = 25 MN/m³ +/- 20%.
- For a length of 1.8 m, the equivalent stiffness (2 strips x (25 MN/m³ x 1 (2.15 x 0.30)) = 18.75 MN/m.
- This support stiffness 18.75 MN/m gives an equivalent static bedding module (18.75 MN/m) / (2.75 x 1.8) = 3.78 MN/m³ (3.5 MN/m³ ± 20%).
- So c_{eq,stat} > 3.5 MN/m² and c_{eq,dyn} < 7.0 MN/m²
- In longitudinal direction, there is a space of approximately 550 mm between the strips to allow air circulation and allow installation of lifting equipment to replace the strips, if necessary.

Solution 3B: FST slab in curve

For FST in curve, the length of the prefab formwork troughs was reduced from 1.8 m. to 0.9 m in order to limit the gap between to prefab elements when installed in curve. This floating slab is supported by resilient L-shaped strips 300x625x50mm (#2/0.9lmst), type CDM-FSP-M9/RR. These strips are made of CDM-RR (resin-bonded rubber) material and have an equivalent static stiffness of about 3.5 MN/m³ (for a slab width of 2.75 m). In longitudinal direction, there is a space of approximately 275 mm between the strips to allow air circulation and allow installation of lifting equipment to replace the strips.

Lateral stability calculations for solution 3

Inertia mass of floating slab

Considering a reinforced concrete with mass density 2.5 t/m³, the inertia mass of the different FSP solutions:

- Solution 3A: 3.09 t/m ➔ Gravity force per linear meter: F_{g,slab} = 30.9kN/m
- Solution 3B: 3.609 t/m ➔ F_{g,slab} = 36.09 kN/m

This results in a difference of inertia mass of +16 %.

Centrifugal force per linear meter of track

The centrifugal force may be calculated as follows:

\[F_c = \frac{m \times v^2}{R} = \frac{2457 \text{kg/m} \times 20^2}{100} = 9.8 \text{kN/m} \]

with:

- Mass of rolling stock (max. 40.32T/car – length 16.41 m.) per linear meter : 2457 kg/m ➔ F_{RS} = 24.57kN/m
- Maximum speed in elevation v = 60 kph +20% safety ➔ v = 72 kph = 20 m/s
- Minimum radius: R = 100 m

Force distribution in the curve (see Figure 9)

The resulting horizontal and vertical forces per linear meter of single track, on the level of the AV bearings, are:

\[\begin{align*}
& \text{F}_{x} = F_{c} \times \cos(6°) = 9.74 \text{ kN/m} \\
& \text{F}_{y} = F_{c} \times \sin(6°) = 5.96 \text{ kN/m}
\end{align*} \]

(The gravity force on the rolling stock and on the slab is considered to be in the same axis to simplify the calculation)

The center of gravity is given by:

\[x_c = \left(\frac{\sum A_i x_i}{A} \right) = 1.492 \text{m} \]

![Figure 9 : Typical FST Cross Section on Bearings in Curve](image)

Due to the asymmetric location of the centre of gravity, the vertical force F_y is unequally distributed over the 2 supports. The reaction force of the left support (inner side of the curve) and the reaction force of the right support (outer side of the curve) are:
Horizontal displacement in longitudinal track direction

Considering the emergency break of a full train ($a=2.2$ m/s²) and taking into account a track section of 120 m (single pouring of the concrete in one time), a total train length 49.23 m and total max. train mass $m_{RS} = 112.24$ tons

$$F_H = m_{RS} \times a = 247 \text{ kN}$$

The relevant lateral stiffness resisting the forces

$$K_H = \frac{G \times S}{H} = \frac{0.65 \times 10^9 \times (1.25 \times 0.3) \times 2 \times \frac{1}{1.8} \times 120 \text{ (m)}}{0.05} = 650.10^4 \text{ N/m}$$

(G = 0.65 MN/m²)

This results in a horizontal deflection:

$$\delta_H = \frac{F_H}{K_H} = \frac{247 \text{ kN}}{650000 \text{ kN/m}} = 0.38 \text{ mm}$$

Horizontal displacement perpendicular to track direction

To calculate the lateral displacement due to the force in curve, use is made of the Prud’homme criterion (see ref. [8] – pag.406-407)) which takes into account the total lateral force as a worst-case scenario.

Lateral resistance

$$H \geq \frac{P}{3} + 10 \text{ for each axle}$$

For a length of 16.41 m (succession of 2 bogies) we have, with an axle load of 100.8 kN/axle

$$F_H = \left(\frac{100.8}{3} \times 10\right) \times 4 \text{ axles} = 174.4 \text{ kN}$$

This force is applied on 16.41 m, meaning that all the strips in the curve will have to be considered for a length of 16.41 m.

$$K_H = \frac{G \times S}{H} = \frac{0.65 \times 10^9 \times (0.625 \times 0.3) \times 2 \times \frac{1}{0.9} \times 16.41 \text{ (m)}}{88.88 \times 10^4 \text{ N/m}} = 88.88 \times 10^4 \text{ N/m}$$

(G = 0.65 MN/m²)

Resulting in a horizontal (lateral) displacement of

$$\delta_H = \frac{F_H}{K_H} = \frac{174.4 \text{ kN}}{88.88 \times 10^4 \text{ kN/m}} = 1.962 \text{ mm}$$

Which is OK when compared to the max allowable lateral displacement for a 50 mm high elastomer bearing (lateral stability criterion)

$$\delta_H = 1.96 < \frac{H}{3}=16.66$$

The elastomer bearing is therefore considered to be sufficiently stable against lateral sway and no lateral buffer is required.

NOISE & VIBRATION MEASUREMENT CAMPAIGN AND RESULTS

In order to evaluate the performance of the different solutions, a measurement campaign was done early 2011 (3 months after start of the operations – ref. [6]).

Vertical Vibration On Trackbed And Invert (Transmission Loss):

2 different techniques were used to measure simultaneously the vertical vibration on the trackbed and invert:

- Measurements under normal circulation of trains (average of 5 to 10 metro train passages).
Attention:

- Additional measurement points were taken in the Blue Line (see Table 3) in zones with classic ML track infrastructure (non-isolated track) so as to have a reference track condition to compare the v_{rms} on the invert for the different mitigation interventions.
- Rail Roughness: further to Metro Lisbon, the track was recently ground, so that it may be considered that rail roughness was for all cases reasonably similar.
- Rolling Stock speed (see Table 3): was for all cases between 45 and 60 kph. In the analysis we have not taken into account possible differences in vibrations due to speed, who may add up to approx. 1 to 2 dBv.
- The highest injection of vibration energy by the rolling stock was found around 63Hz.
- Measurements under mechanical impulses on the rails using a falling mass of 6 kg

Vertical Vibrations In The Buildings Nearly Vertical Above And Closest To The Tunnel

Vertical vibrations were measured in the building near to the tunnel at several locations. Figure 10 shows the 3 measurement points (P1, P2, P3) along the Red Line. In the Blue Line (connection with Red Line in S.Sebastião Station), additional measurements were done to allow comparison with the reference track. Table 3 shows an overview of all the measurement points and special conditions linked to each of them.

<table>
<thead>
<tr>
<th>Point</th>
<th>Local Conditions</th>
<th>N&V Solution</th>
<th>Train speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda – S. Sebastião (Red Line)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Near old tunnel entrance</td>
<td>3</td>
<td>60 kph</td>
</tr>
<tr>
<td>P2</td>
<td>Near transition</td>
<td>3</td>
<td>60 kph</td>
</tr>
<tr>
<td>P3</td>
<td>Reduced speed – switch</td>
<td>1</td>
<td>45 kph</td>
</tr>
<tr>
<td>Sit. Apolónia – S. Sebastião</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Reinforced tunnel – curve</td>
<td>1</td>
<td>45 kph</td>
</tr>
<tr>
<td>EXTRA</td>
<td>Near transition</td>
<td>ML Reference Track</td>
<td>45 kph</td>
</tr>
</tbody>
</table>

Table 3. Measurements overview and associated special conditions

Figure 10 : Location of the measurement points along the Red Line

Measurement Results

Considerations regarding “Insertion Loss/Insertion Gain” (IL/IG) vs “Transmission Loss” (TL)

Figure 11 shows a typical set-up of a reference and isolated situation.

Figure 11. Typical set-up of isolated and non-isolated track

Insertion Loss (IL) (some authors use the term Insertion Gain in order to make a “negative loss” have a “positive” connotation) is defined as

$$IL_{ic} = 20 \log \left(\frac{B_{ic}}{B_{ref}} \right) \quad (B_{ic} < B_{ref} \text{ i.e. isolation} \Rightarrow IL_{ic} < 0 \text{ so negative value!})$$

Whereas Transmission Loss (TL) is defined as (for reference or for isolated case)

$$TL = 20 \log \left(\frac{A}{B} \right)$$

It is less time-consuming and complex to measure TL than IL. Measuring IL requires, to be 100% correct, that: (a) the reference case is measured on the exact location where the isolated case will be built (in order to have the exact same boundary conditions (b) the isolated case is built on that location (c) the isolated case is measured on the same location. In practice this is hardly feasible and IL is therefore measured mostly by comparing 2 similar locations (assuming same boundary conditions), of which one is the reference and the other the isolated case. TL, on the other hand, is easier to evaluate and to measure.
The difference between both IL and TL can be appreciated as follows:

\[TL_{ic} = 20 \log \left(\frac{A_{ic}}{B_{ic}} \right) \]

\[TL_{ref} = 20 \log \left(\frac{A_{ref}}{B_{ref}} \right) \]

\[\Delta TL = (TL_{ic} - TL_{ref}) = 20 \log \left(\frac{A_{ic}}{B_{ic}} \right) - 20 \log \left(\frac{A_{ref}}{B_{ref}} \right) = 20 \log \left(\frac{A_{ic}}{A_{ref}} \right) - IL_{ic} \]

As a result

\[IL_{ic} = 20 \log \left(\frac{A_{ic}}{A_{ref}} \right) - \Delta TL \]

If distance between A and B locations is not important, it may be considered \(A_{ref} = B_{ref} \), so \(\Delta TL = TL_{ic} \). Considering that the introduced energy levels \(E_{ic} \) and \(E_{ref} \) may be kept reasonably identical, it may be assumed that \(A_{ic} / A_{ref} \) is proportional to \((f_{ic} / f_{ref})^\gamma \) at higher frequencies \((f > 50-63 \text{ Hz}) \), where \(f_{ic} \) being the base resonance frequency of the reference case and \(f_{ic} \) the base resonance frequency of the isolated case.

So, \(IL_{ic} = 40 \log \left(f_{ic} / f_{ref} \right) - TL_{ic} \)

In FST cases compared to non FST cases (with \(f_{ref} > f_{ic} \)), the \(f_{ic} / f_{ref} \) ratio can vary considerably up to a factor approx. 5. Considering therefore a correction factor 40 log \((f_{ic} / f_{ref}) \) < 30 dBV, it may be stated that TL measurements give at higher frequencies \((f > 50-63 \text{ Hz}) \) a good indication of FST mitigation performance.

Considerations regarding base resonance frequencies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>ML ref.</th>
<th>Sol 1</th>
<th>Sol 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{0,\text{asx}}) (max) (1)</td>
<td>MN/m</td>
<td>27.0</td>
<td>17.0</td>
<td>18.8</td>
</tr>
<tr>
<td>Total Mass (2)</td>
<td>kg</td>
<td>450</td>
<td>1400</td>
<td>3372</td>
</tr>
<tr>
<td>(f_{ic}) (3)</td>
<td>Hz</td>
<td>39.0</td>
<td>17.5</td>
<td>11.9</td>
</tr>
<tr>
<td>(L_e @ 63Hz) (4)</td>
<td>dBV</td>
<td>-6.3</td>
<td>-22.3</td>
<td>-29.0</td>
</tr>
<tr>
<td>Calculated correction factor (5)</td>
<td>dBV</td>
<td>-</td>
<td>13.9</td>
<td>20.6</td>
</tr>
<tr>
<td>Estimated (T_{ic}) (6)</td>
<td>dBV</td>
<td>-</td>
<td>36.2</td>
<td>49.6</td>
</tr>
<tr>
<td>Measured (T_{ic}) (7)</td>
<td>dBV</td>
<td>-</td>
<td>32.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Variation Estimated vs Measured (T_{ic})</td>
<td>%</td>
<td>-</td>
<td>12.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

(1) per booted twin-block system, CDM-FSP bearing or CDM-TOMAS panel
(2) Inertia + non-suspended mass
(3) As calculated by DIN-45673 norm (ref.[5])
(4) \(L_e = 40 \log(f_{ic} / 63) \)
(5) Correction factor = 40 log \((f_{ic,\text{ref}} / f_{ic,\text{sol}}) \)
(6) \(T_{ic} = 40 \log \left(f_{ic,\text{ref}} / f_{ic,\text{sol}} \right) / L_e \)
(7) See figure 13

Table 4. IL vs TL relationship

The most recent DIN-45673 norm (ref.[5]), defines ways to evaluate the base resonance frequency of track infrastructure systems essentially modeled as a single degree of freedom system. Application of this approach to the different cases in this project is summarized in Table 4.

It can be appreciated from Table 4, that the calculated transmission loss gives a reasonable good correlation with the measured transmission loss (difference < 15%), which supports the statement that for higher frequencies TL measurements give a good indication of FST mitigation performance, considering a correction factor of 40 log \((f_{ic}/ f_{ref}) \).

Transmission losses (\(TL_{ic} \))

As an example, the transmission loss measurements (comparison between the simultaneous vibration signals on trackbed \((A_{ic}) \) and invert \((B_{ic}) \) for solution 3 are shown in Figure 12.

It is noted that both excitation techniques (passing trains and impact hammer) to measure TL give reasonably good coherence starting from higher frequencies \((f > 50-63 \text{ Hz}) \).

Figure 12 : Average transmission loss – Point 1 - comparison between passing train and mechanical impulse values

Figure 13 shows the average transmission loss under passing train for the different solutions.

Figure 13 : Average transmission loss – comparison for different measurement points under passing trains.
Insertion loss

Figure 14 shows an estimate measured IL values for all introduced FST mitigation systems. They are measured by comparing the vibration levels on the tunnel invert \((B_{v_i}) \) for the different cases in comparison to vibration level on the tunnel invert for the reference track \((B_{v_{ref}}) \), without taking into consideration any correction for difference in speed (45 kph in some cases and 60 kph in other cases - see Table 3) and structural boundary conditions. As was previously indicated in this paper, the IL curves shown in Figure 14 are only an approximation of the real insertion loss, as they were obtained comparing vibration levels at 2 different locations (assuming the same boundary conditions).

![Insertion Loss vs ML - reference track slab](image)

Figure 14. Insertion loss of the different mitigation systems compared to the ML reference track slab

Exterior Vibrations

Table 5 represents the global results of the various measurements made outside the tunnel, reflecting the absolute vibration levels for the surrounding buildings. More detailed information and graphs are available upon demand.

<table>
<thead>
<tr>
<th>Residual vibration</th>
<th>Vibration during train passages</th>
<th>Vibration Exceedance vs. Residual dBv</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{res}) (m/sec)</td>
<td>(v_{max}) (m/sec)</td>
<td>(ref 1E-9m/sec)</td>
</tr>
<tr>
<td>P1 2.1 E-6</td>
<td>2.1 E-6</td>
<td>0.0</td>
</tr>
<tr>
<td>P2 2.1 E-6</td>
<td>2.2 E-6</td>
<td>+0.4</td>
</tr>
<tr>
<td>P3 1.9 E-6</td>
<td>2.7 E-6</td>
<td>+3.0</td>
</tr>
<tr>
<td>P4 2.6 E-6</td>
<td>2.8 E-6</td>
<td>+0.6</td>
</tr>
</tbody>
</table>

Table 5 Absolute vibrations levels measured in the surrounding buildings

The exterior vibration measurements results are in accordance to the ML recommended limit of 30E-6 m/s and have confirmed the reaction of neighbors, in the sense that the metro trains were not noticeable.

CONCLUSIONS

In this paper a comprehensive overview is present of the introduction of different FST systems in the recent extension of the Red Line of the Metro Lisbon.

The different FST systems were described in terms of their respective dynamic performance characteristics and engineering detailing for their implementation.

The executed vibration measurements campaign, which is part of the quality assurance program imposed by Metro of Lisbon, has allowed drawing the following conclusions:

- The dynamic characterization of resilient materials in terms of dynamic stiffness is the basis to predict the vibration isolation performance of track systems integrating said resilient materials.
- TL measurements with impact hammer on FST show quite good correlation with transmission loss measurements under passing trains for frequencies > 50-63 Hz.
- TL measurements are easier and less complex to proceed with than IL measurements. For higher frequencies (> 50-63Hz), it is shown that by applying a correction factor based upon the ratio of the base resonance frequencies \(f_{ref} \) and \(f_c \), calculated by use of the SDOF model suggested by the most recent version of DIN-45673, it is possible to have a reasonable approximation of the IL performance of an installed FST system, creating as such an easy and more cost efficient procedure for FST performance check as part of a quality assurance program.
- The installed FST vibration mitigation systems, ranging from resilient surface mats to discrete resilient supports with varying dynamic stiffness performance characteristics show good correlation with predicted performance, the most performing vibration mitigation system remaining the FST on discrete resilient supports.
- The installed FST vibration mitigation systems have proven to be effective in mitigating the vibrations in the surrounding buildings during train passage.

The design of the FST on discrete bearings (CDM-FSP) gives Metro of Lisbon the possibility to inspect the resilient bearings and if needed to replace them. The elastomer bearings in this system were designed as such to be sufficiently stable against lateral sway so that no lateral buffers are required, consequently reducing the overall installation costs.
ACKNOWLEDGMENTS

We thank Metropolitano de Lisboa (Eng. Francisco Secio and Eng. Neves Carneiro) and Prof. Pedro Martins da Silva (Engenharia de Acustica e Ambiente) for their help and collaboration during the execution of this project.

REFERENCES