FUTURE of STREETS

Andres Sevtsuk
Associate Professor of Planning
Director, City Form Lab
Mobility firms, OEMs, TNCs

Harvard University Graduate School of Design

Public Sector

Infrastructure and public space design, engineering
Santa Monica Blvd and Vermont, LA
Vermont / Santa Monica Metro Station
Los Angeles, CA. Existing condition.
Automated Vehicles

Best-case scenario

Worst-case scenario
Best-case scenario

- Pedestrian and bike friendly streets with generous landscaping
- Higher density mixed-use surroundings
- Reduced traffic and parking
- Active street fronts
- New infill building
- Automated metro trains
- Shared AV stop
- Shared AV buses of variable sizes
- Wider sidewalks
- Restaurants with outdoor seating
- Santa Monica
- Vermont
Worst-case scenario

Exclusive AV elevated freeway

Railings to prevent pedestrians from crossing

Pedestrian overpass

Shared AV stop

Single-occupant AVs

Confused AV blocking traffic

No pedestrian sidewalks

Abandoned underground metro station

Jersey barriers for traffic management

“Drive-Inside” restaurant

AV Pick-up / Drop-off lot

Vermont

Santa Monica Blvd.
Five levels of uncertainty

Today’s mobility

Personal gasoline car, TNC and transit
Five levels of uncertainty

Best-case scenarios

Shared-electric AV or human vans/buses
Five levels of uncertainty

Worst-case scenarios

Single-passenger AV and cars
Seductive images of the future versus reality?
Modal capacity
Maximum people per 9ft lane per hour per direction (w/o uncomfortable congestion)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk</td>
<td>10,000</td>
</tr>
<tr>
<td>Bikes</td>
<td>10,000</td>
</tr>
<tr>
<td>Cars</td>
<td>2,000</td>
</tr>
<tr>
<td>Bus</td>
<td>6,000</td>
</tr>
<tr>
<td>Light rail and BRT</td>
<td>11,000</td>
</tr>
<tr>
<td>Heavy rail and metro</td>
<td>+25,000</td>
</tr>
</tbody>
</table>

Car-based mobility solutions can not service high-density environments.
Amara’s Law: We tend to overestimate the effect of a technology in the short run and underestimate it in the long run.

- Ford Model T 1908
- Federal Highway Act 1956
- GI Bill 1944
- Uber 2018
Five common myths
around AVs and TNCs
Myth 1: With robo-taxis, we will have fewer cars and therefore less traffic on roads?
Myth 2: Because AVs are much safer drivers than humans, streets will be more pedestrian friendly?
Myth 3: Most people will be sharing rides in TNCs and Avs?
Myth 4: AVs will revolutionize public transit by introducing flexible routes instead of fixed routes?

Source: LA Metro
Myth 5: We will need electric car chargers on each curb?
What should cities undertake NOW as safe bets?

1900

2000

2100?
1. Invest AV technology into public transit

- Variable capacity vehicles for different urban contexts.
- 30% more fixed-route lines for the same operational costs.
- More frequent and flexible scheduling including night-time service.
- New opportunities for private-public partnerships.
- Technology ready today.
2. Discourage private vehicle ownership and encourage a transition to shared, pooled AVs.

Example: Singapore’s Certificate of Entitlement (COE) policy requires each vehicle to have a 10-year COE, which are auctioned to the highest bidder. The number of COEs is kept constant, at a 0% annual increase.
3. Plan streets for people, not vehicles
4. Implement electronic systems to manage rideshare providers, dockless bikes and e-scooters that operate in the public right of way.

LA DOT
https://github.com/CityOfLosAngeles/mobility-data-specification
5. Implement

a. Bike lanes for Personal Mobility Devices,
b. High Occupancy Lanes for shared transit
c. Pick-up / drop-off stations for public transit and ride-sharing services.
Thank you!

http://cityform.gsd.harvard.edu