Life Without Diesel: Operations Planning for Emerging Vehicle Technologies

David Carr

Facilities and Fleet Manager Regional Transportation Commission of Washoe County

Reno, NV

Today's Presentation

- Overview of RTC
- Current State of Electric Bus Market
- Benefits of Electric Buses
- Cost of Energy
- Challenges / Lessons Learned Larger Scale
 Deployment
- Route Scheduling Factors

Overview - Region Transportation Commission of Washoe County

Serving Reno, NV since 1978

- 8 million annual trips
- 26 Routes
- 68 Fixed Route Buses
- (21 Electric Buses)
- Two BRT Lines
- 45 CNG Paratransit
- Vehicles

Overview - Region Transportation Commission of Washoe County

- Why buy electric buses?
- The answer is environmental sustainability, improving the quality of life for our customers and community, and it's the right thing to do for our children and their children.
- Potential for cost savings

Overview - Regional Transportation Commission of Washoe County

- Proterra BE 35 (2014)
 - Short range 30 miles
 - 4 minute charge time (about 10%)

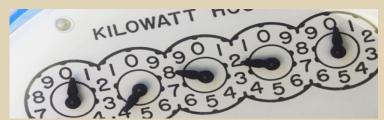
- Overhead fast charger
- Rate of charge 480 kWh

Overview - Regional Transportation Commission of Washoe County

- Proterra Catalyst (2018)
 - Long range 130 miles
 - 6 7 hours charge time
 - Overnight charging
 - Rate of charge 60 kWh

- But also can charge on fast charger!
- Rate of charge 300 kWh

Current State of Electric Bus Market


- Buying buses are the easy part!
 - Almost every manufacturer has an electric bus
 - BYD, New Flyer, Gillig, Nova, etc.
 - Chargers available
 - Overhead
 - In bus
 - Inductive 200 kWh

Current State of Electric Bus Market

- Understanding electric buses Infrastructure
 - Industry developments
 - Demand Charges and costs

- Learning curve, disruption with new technology
- Risk
 - Diesel price volatility/dependence upon foreign oil/ diversify fuel types
 - Reliability of buses/manufacturer
 - Technician training and availability

Current State of Electric Bus Market

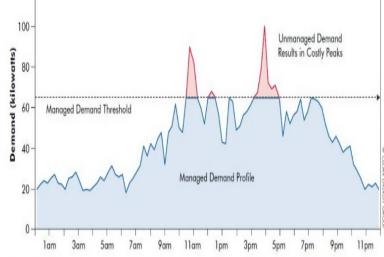
- New Technology can be risky
 - Technology advances quickly
 - Inexperienced manufacturers
 - Smaller scale parts –
 delays and high costs
 - Technicians hard to find and training materials under development
 - New technology chargers are more complex

Benefits of Electric Buses

Benefits

- Zero emissions in high density urban area
- Electricity produced elsewhere
- Quieter operations
- Potential for lower maintenance costs
- Potential for lower fuel costs

Cost of Power



- Electrical Demand Charges
 - Demand charge or peak demand (KW) is highest rate of usage during any 15 minute period during

the month.

- Peak demand determines cost for the entire month
- Billed between \$10 and \$30 per KW.
- Rates
 - **OGS-HEVRR-NET: General Service H Electric Vehicle Recharge Rider – NET.**

How battery storage can help manage electricity demand over a 24-hour period

Through the deployment of an energy storage system, peak demand can be effectively capped at a specified levelsignificantly reducing utility demand charges. Assuming a demand charge of \$10 per kilowatt and peak demand reduction from 100 kilowatts to 65 kilowatts each period (as shown here), energy storage could reduce the customer's demand charge by \$350 per billing period, amounting to an annual savings of \$4,200.

- Infrastructure
 - for a few buses relatively simple tie into building system
 - for a large number of buses can be costly and complex
- Availability and impact to grid
- Upgraded transformers, switch gear, distribution panels
- Number / geographical distribution and type of chargers

- "Your mileage may vary"
 - Less predictable range and performance than diesel
 - Test buses in actual conditions to get true experience
 - When routes matched properly, bus operates entire day with enough charge
- Fuel cost per mile (FEB 2018)
 - Diesel \$0.49
 - Hybrid \$0.37
 - Electric \$0.31

- Short range buses work well on fixed routes of short duration
- Predictable range and performance
- Short range buses fast charge at 480kWh during the peak rate period, longer range buses charge at CPU rate
- Power outages and charger issue may put vehicles out of service

- Long range buses (120 130 mile range) are expected to be more flexible
- Less predictable range and performance
- Long range buses charge at 60 300 kWh during the off peak rate periods
- Power outages and charger issue may not put vehicles out of service

Drivers

- Range Anxiety 120 130 mile range
- Regen, acceleration, reliability, efficiency
- Understanding charging difference

Technicians

- Wanted to be trained but under warranty
- Union supports training

Passengers

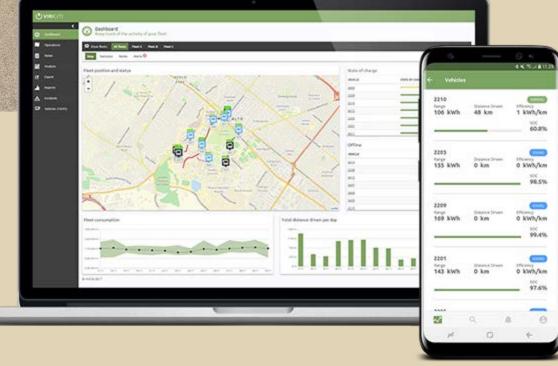
- Like quieter buses
- Wifi, USB's, etc...

Scheduling


- Electric Buses are Disruptive
- Introduce more variables
 - Equipment limitations
 - Geography / Environmental Conditions / Traffic
 - Passenger loads
- Limited Range
 - electric vs 300 miles diesel

Scheduling

- Electric Buses may require different scheduling process
- Schedule impacts Cost of operations
 - Range is shorter than diesel
 - Vehicle types
 - Energy costs vary with time and kWh needed
 - Opportunity Charging Gaps in schedule


Technology Solutions

Data Collection / Analysis

Battery storage

Conclusions

- Fledgling industry is improving
- More factors to consider requires more complex analysis
- Understand vehicle performance, energy costs, operational and customer needs
- Build out expandable and flexible infrastructure
- Battery storage may be critical success factor
- Integration of technology and data are key to solving the electric bus equation

Life Without Diesel: Operations Planning for Emerging Vehicle Technologies

David Carr
Facilities and Fleet Manager
Regional Transportation Commission
of Washoe County, Reno, NV

