

IF THIS FUEL CELL BUS COULD TALK: THE TRUE STORY

Jaimie Levin

center for transportation and the environment

Jane Sullivan

champaign-urbana mass transit district

APTA Sustainability Conference

Vancouver, BC Canada July 31, 2018

Jaimie Levin, Sr. Management Consultant

CTE – NON-PROFIT

Mission: To advance clean, sustainable, innovative transportation and energy technologies

501(3)(c) non-profit

Portfolio - \$450+ million

Research, demonstration, deployment

Alt. fuel and advanced vehicle technologies

National Presence

Atlanta, Berkeley, Los Angeles, St. Paul

CTE ZEB PROJECTS

Existing Zero Emission Bus (ZEB) Projects (more than 140 ZEB's with over 30 Transit Agencies)

2017 Low-No Awards with CTE (more than 50 ZEB's with 25 Agencies)

CLASS 8 FUEL CELL TRUCK

Specifications

- 85 kW Fuel Cell
- 100 kWh Battery
- 420 kW (560 HP) Motor
- 30 kg Hydrogen Storage
- Plug-in Capable

Performance

- 150-Mile Range
- 65 mph Top Speed
- Power: Maintains 30 MPH on 6% Grade
- Torque: Enough to Start on 20% Grade
- Port of Los Angeles June 2018

https://www.todaystrucking.com/focus-kenworth-zero-emissionscargo-transport/

Kenworth's Zero Emissions Cargo Transport (ZECT) is scheduled to go into real-world service in March 2018. It's a hydrogen-fuel-cell powered battery-electric Class 8 and works and feels just like a diesel, only quieter. Equipment Editor Jim Park drove when the company introduced it to the Media in February.

CLASS 6 STEP-VAN

Specifications

- 33 kW Fuel Cell
- 49 kWh Battery
- 9.8 kg Hydrogen Storage

Performance

- 125-Mile Range
- 65 mph Top Speed
- West Sacramento Fall 2018

switch reluctance traction motor and controller anks ar) 4 x Li-lon battery pods

650 Vdc HV system

FC stack and BOP

skid mounted 33 kW

independent thermal management systems for FC and traction components

2 x H2 storage tanks (9.8 kg @ 350 bar) 4 x Li-lon battery (12.2 kWh each), Cté

SHELL HYDROGEN

Largest Fuel Retailer in the World

4 Existing Light-duty Stations (southern CA)

2017 California Energy Commission Award for **7 New Stations** (northern CA)

2018 California Energy Commission Award for Heavy-Duty Truck Fueling Station (1,000 kg/day) with 100% Renewable Hydrogen (Port of Long Beach)

FCE BUS PROJECTS

- National Fuel Cell Bus Program
- AC Transit Expanded Service (13 Buses)
- OCTA Demonstration (1 ElDorado Bus)
- Fuel Cell Electric Bus Commercialization Consortium (FCEBCC) (\$45m; 20 Buses; OCTA/AC Transit)
- CUMTD Articulated Buses (2 Buses)
- AC Transit ZEB Study (BEB/FCEB)
- San Diego ZEB Study (BEB/FCEB)
- LA Metro ZEB Roadmap (WSP/CTE)
- 100-Bus Initiative

100-BUS INITIATIVE

NEED

Transit agencies will need **both** Battery-Electric and Fuel Cell Electric Buses (FCEBs) to meet the California Air Resources Board goal of 100% zero emission buses by 2040.

OBJECTIVE

Drive down the capital cost of North American FCEBs to the point where they are commercially viable for transit properties seeking zero-emission solutions — \$850,000/bus.

ACTION

Four or more transit agencies in northern and southern California, **purchasing up to 25 FCEBs** each, and installing hydrogen fueling stations and facility upgrades where needed.

Driving Price Down

Source: New Flyer Industries

FCEB REAL-WORLD PERFORMANCE

		AC Transit Fuel Cell B					
Bue	FUEL CELL	June Miles	Vehicle Miles				
Dus	HOURS	@ 9 MPH	Life to Date				
FC4	22,984	3,061	219,148				
FC5	22,688	2,671	214,109				
FC6	23,123	2,483	184,074		Γ		
FC7	28,945	2,629	197,861				
FC8	22,087	3,455	151,888				
FC9	21,912	4,050	188,171				
FC10	24,445	4,096	218,257		•••		
FC11	25,246	2,679	217,122				
FC12	25,960	2,396	220,000				
FC13	14,057	2,262	140,267				
FC14	25,604	2,629	216,611				
FC15	20,673	2,497	177,654				
FC16	25,483	2,666	202,766				
TOTALS	303,207	37,574	2,547,928		Γ		
Average	23,324	2,890	195,994				
NOTE: FC7 and FC12 fuel cells were manufactured by UTC in							
2003, 14 years ago with an expected EOL of 5,000 hours.							
The other 11 fuel cells were manufactured by UTC in 2008							
and 2009							

Performance - July 21, 2018							
Hydrogen Dispensed							
Veerly Tetele	Bu	Cars					
rearry rotals	Emeryville	Oakland	Light Duty				
2014	22,383	31,862	1,743				
2015	27,750	38,589	1,188				
2016	26,070	59,537	583				
2017	21,610	66,422	188				
018 JAN-MAY	10,624	29,178	39				
TOTALS	108,437	225,588	3,742				
Total to Date 337,767 >2011:≈ 500							
Hydrogen Fill Transactions							

Hydrogen Fill Transactions						
Yearly Totals	Bus	Cars				
	Emeryville	Oakland	Light Duty			
2014	1,129	1,749	931			
2015	1,635	2,081	638			
2016	1,954	4,047	490			
2017	1,660	4,777	98			
2018 JAN-MAY	771	2,215	14			
TOTALS	7,149	14,869	2,171			
_	Total to Date	24,189				

- 2.547 million miles (3.3 million since 2005)
- 28,945 hours Fuel Cell (5,000-hour Design Life)
- ≈ 500,000 kilograms of H₂ (1 kg = 1 gallon gasoline)
- 24,189 safe fills

WORLDWIDE ACCEPTANCE

Performance

Over 10 million miles of proven service worldwide; 3 million miles at AC Transit and over 1 million at SunLine Transit.

10 million

miles

Fuel cell durabilty — over 27,000 hours of service and counting. Exceeds the half-life of the bus.

Global Expansion

There will be over 330 fuel cell electric buses in operation in Europe at more than 22 cities by the end of 2020 (FCH-JU JIVE and 3Emotion programs) and over 1,500 worldwide with large scale deployments in China.

1,500 FCEBS BY 2020

MID

cte

FCEB ADVANTAGES

Significant reduction in vehicle weight

(carry more passengers)

Rapid refueling speeds (6 to 10 minutes)

H₂ AND BEB STATION CHALLENGES

Price and delivery of H2 on parity with conventional fuels. Also equipment maintenance cost reduction.

Area of fueling footprint to refuel 50, 100, or 200 buses.

Renewables for hydrogen production; **Resiliency** - Natural Disasters; Also **Redundancy** to ensure near 100% service reliability.

Speed of refueling in the normal five- to seven-hour night window; Also **Scalability** for future expansion.

Equity, or CapEX, needed to build at a reasonable price utilizing baseline components for future scale up.

SCALABILITY

The Challenge for 100% ZEB Deployment: Infrastructure and Scalability

H2 STATION CAPABILITIES

Small footprint

Redundancy and backup

(enable operators to respond to natural disasters)

ZEB CONFERENCE – FALL 2018

Los Angeles • September 10 & 11th

Hosted by LA Metro

Transit Agency Perspective

Champaign-Urbana Mass Transit District

Jane Sullivan, Grant Manager/Sustainability Planner

CHAMPAIGN-URBANA, ILLINOIS

MTD FLEET

MTD

Cté

GOAL: RENEWABLE HYDROGEN

296 kW Solar

- \rightarrow 230-260 MWh/year
- \rightarrow 4,000 kg/year
- → Support one bus 21,000 miles/year (assuming 5.25 mi/kg)

LOCAL INTEREST

But, I thought you were transitioning to hybrid buses? I did my own research, and...

This will cost a fortune.

This will use a lot of electricity.

Why not battery electric?

MTD has no experience in this technology.

WHY FUEL CELL?

Range 300 mi

Fuel cell-electric buses can drive up to 300 miles on a single refueling. Battery electric buses have a documented range up to 204 miles.

Refuel Time **10 min**

Fuel cell-electric buses have the ability to refuel continuously in 6-10 minutes. As a comparison, recharging large batter packs take as much as 4-5 hours.

Weight

Fuel cells are achieving high power densities, are more compact, and lighter in weight. The fuel cell units are approximately one third of the weight of batteries.

FLEXIBILITY

REUSE & RECYCLE

The expected life of a fuel cell on a 60-foot bus is more than 12 years. Fuel cells have no hazardous materials and can be reused three or four times.

ENERGY SAVINGS

SAFETY

When used in accordance with proper guidelines, hydrogen fuel is safe.

Buses are equipped with hydrogen detectors to immediately detect if a leak has occurred.

LOOKING AHEAD

Thank you!

Jaimie Levin

center for transportation and the environment

Jane Sullivan champaign-urbana mass transit district