Coradia iLint – Hydrogen Fuel Cell Train

Agenda

- Motivation to strike a new path
- Coradia iLINT and its technology
- Safety and certification
- Production and supply of hydrogen
- Efficient Utilization of grid capacity
- Next steps ...

Motivation to strike a new path...

Significant part of the **rail network is not electrified** and high cost of traditional electrification

Achieve greater resiliency and address increasing prices of diesel fuel

Need to improve **air quality** and **reduce noise**

Overload of roads and need to reduce pressure on grid at peak times

Hydrogen the ideal alternative energy source

HFC Rolling Stock – comparison with electric <u>alt</u>ernatives

- + Performance, operating range and refueling duration comparable to that of diesel trains (900 to 1.100 km range, refueling from empty tank takes 15 minutes)
- higher investment in infrastructure

- + lower investment in infrastructure
- suboptimal relationship between operating range and cost / weight / re-charging duration (200 km range: ~33 t of batteries/ 45 minutes recharging)

BEMU

Motivation to strike a new path...

Coal

34 MJ/kg

1801

Diesel

43

1925

Hydrogen

120 MJ/kg

2018

CORADIA Lint: the Diesel platform from which HFC train developed....

LINT 27: 47 trains

LINT 41: 688 trains

More than 1000 LINT Diesel Trains sold worldwide, including in Ottawa, Canada

LINT 54: 203 trains

LINT 81: 72 trains

... a reliable and service proven base for the first hydrogen HMU

Fuel Cell Trains: The Technology – transformation from Diesel to HMU

Fuel Cell Trains: Design criteria

- Retain the same train dimensions
- No significant changes in weight/point of gravity
- Re-use of main components (eg. bogie)
- Maintain excellent performance (availability, reliability, acceleration, range, etc)
- Avoid adding equipment in passenger areas
- No adverse impact on passenger experience and comfort
- High energy efficiency
- Scalability technology can be scaled and used to retrofit existing fleets, can be used on passenger locomotives, bi-level multiple units (of varying lengths) etc.
- Interoperability (mixed fleet)

CORADIA iLint: The fuel cell composition

CORADIA iLint: Hydrogen storage

CORADIA iLint: The lithium-Ion battery composition

Fuel Cell Trains: CORADIA iLint - energy management

Energy management is the key to achieve highest efficiency

- Operates fuel cells at optimal efficiency
- Optimizes energy management during acceleration, coasting and braking
- Recuperates kinetic energy during braking (>30% recuperation of traction energy used)

CORADIA iLint: Validation and certification process (example for Germany)

Eisenbahn-Bundesamt

Technical Specification for Interoperability

- Infrastructure
- Energy
- Rolling Stock
- Train Control / Communications

Notified National Technical Rules

- Running dynamics
- Fire Safety
- EMC
- Functional Safety
- Labeling
- and some others

Eisenbahn-Bundesamt

Core subjects

- Running dynamics
- Crash
- Brake
- Wheelsets
- Train radio / Train protection

European Railway Agency

Safety assessment on Common Safety Methods (CSM)

CORADIA iLint: Validation and certification process – the strategy

Risk analysis with consideration of environmental and operational conditions

> TÜV Süd Battery Testing

Definition of requirements

Combined assessment by TÜV Süd Fire safety

> Hydrogen System & Li-Ion-Battery

System with special supervision

TÜV Süd Rail

Follow-up on realization

TÜV Süd Industrie Service Independent inspection and assessment

Validation of fulfillment of requirements

CORADIA iLint: Certification ... Hydrogen safety

- Certification of pressure vessels in accordance with **EC 79/2009**
- Certification of overall system in accordance with 2014/68/EU (PED)
- Validation of structural safety (frame / vessels / piping) by S&V-test in accordance with EN 61373
- Certification of railway conditions (Environment, EMC, Fire Safety)
 - Fire safety EN 45545-2
 - Environment EN 50125/IEC 60077
 - EMC EN 50121-3-2

CORADIA iLint: From certification to regular passenger service

• Certification for passenger service in Germany received on 11.07.2018

• Inauguration of passenger service at Bremervörde on 16.09.2018

• Daily passenger service according to regular time table since 17.09.2018

CORADIA iLint: ... in daily passenger service!

- Daily passenger operation
- Operation in mixed fleet
- 75 miles of tracks
- One mobile refueling station in Bremervörde

CORADIA iLint - entrance into daily passenger revenue service on Sept. 16, 2018

The New York Times Hydrogen-powered trains begin service in Germany. In a breakthrough for a green fuel, two hydrogen-powered trains are expected to go into commercial service Monday on a rail line in northern Germany near Hamburg. The trains, which will serve cities including Bremerhaven and Cuxhaven, will be powered by hydrogen fuel cells that generate electricity through a chemical reaction. The trains are being promoted as a cheaper alternative to stringing wires on rail lines that are not electrified. Hydrogenpowered vehicles produce no emissions of carbon dioxide, which is blamed for climate change, or other pollutants....

Hydrogen supply: From by-product to regenerative energy

By-product of other processes

Hydrogen supply: Mobile refueling station

Hydrogen supply: An ecological comparison

minus 700t CO₂ per year...

...equals annual emissions of **400 cars**

per year...

...equals annual emissions of 6.000 cars

minus

Reduction per iLint vehicle

Reduction per iLint fleet

Hydrogen supply: Resiliency – Grid use/balancing

Electrical mobility and effects on other sectors: Load on transmission grids

As the **share** of renewable energy is **increasing**...

... the transmission networks are more and more overloaded – hydrogen can be produced in off-peak.

One solution: Local use of green electricity for electrolysis

Thank you!!!

