

BACKGROUND

- ☐ California Air Resources Board has proposed a "Zero Emission Bus" (ZEB) rule
 - ➤ Applicable to all California Transit Agencies
 - ➤ All buses must be "zero emission" by 2040
 - ➤ Only electric & fuel cell buses qualify as ZEB
- ☐ LACMTA commissioned this study to:
 - > Evaluate cost of compliance with the ZEB rule
 - ➤ Evaluate the costs and benefits of "near zero" emission options that are based on the continued use of natural gas

ZERO EMISSION BUS OPTIONS

BATTERY ELECTRIC BUS

- □ Depot-only charging, or
- Depot and in-route charging

HYDROGEN FUEL CELL BUS

- ☐ Hydrogen fuel produced from electricity (electrolysis), or
- ☐ Hydrogen fuel produced from natural gas (steam methane reforming)

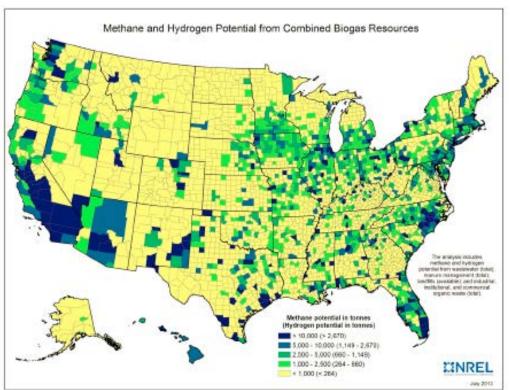
"NEAR ZERO" BUS OPTION

RENEWABLE NATURAL GAS (RNG)

- □ Produced by landfills, wastewater treatment plants, animal manure anaerobic digestion
- □ Processed to remove water, sulfur, CO₂ can be injected into pipelines, used in NG engines

LOW NOX NATURAL GAS ENGINE

- □Commercially available from Cummins; based on ISLG platform used in transit
- ■90% lower tailpipe NOx than required by EPA/CARB; 70% lower tailpipe CH₄



RENEWABLE NATURAL GAS

RNG captures & uses a resource that is normally wasted

This results in significant life cycle GHG reductions compared to petroleum NG

WHAT DID WE DO?

- ☐ Estimated total fleet costs and "wells-to-wheels" fleet emissions from 2015 2055 under three bus technology/fuel options, compared to baseline business as usual:
 - BASELINE: continue to buy "standard" CNG buses and conventional natural gas
 - •LNOx Bus + RNG: Starting in 2016 purchase Renewable Natural Gas and in 2018 start transitioning fleet to Low NO_x CNG engines
 - ELECTRIC BUSES: In 2025 start transitioning fleet to electric buses
 - •FUEL CELL BUSES: In 2025 start transitioning fleet to hydrogen fuel cell buses

2016 LACMTA FLEET

■ All buses are CNG

1,212 40-ft transit

625 45-ft transit (composite)

356 60-ft articulated

2,194 total

□ 75% of fleet has MY2007+ engines that meet most stringent EPA/CARB standards (0.2 g/bhp-hr NO_x)

☐ Approximately 7% of fleet (178 buses) are retired and replaced with new buses each year

BUS TECHNOLOGY/FUEL SCENARIOS

	LNOx + RNG	ELECTRIC	FUEL CELL	
FLEET REPLACE- MENT	Purchase 178 new buses/yr with LNO _x engines beginning in 2019 Repower 178 old buses/yr with LNO _x engines beginning in 2018	Purchase 178 – 240 ¹ new electric buses/yr beginning in 2025.	Purchase 178 new fuel cell buses/yr beginning in 2025	
FUELING	RNG provided through utility pipeline; fueling at existing CNG fuel stations	Depot based charging or Depot and In-route charging	Hydrogen fuel produced on- site by electrolysis of water or steam reforming of natural gas (SMR)	
NEW INFRA- STRUCTURE	None required	Depot and In-route chargers. Depot expansion for	Hydrogen production and fueling stations	
		expanded fleet, and for depot chargers	Upgraded ventilation, H ₂ sensors at depots	

¹ Due to daily range restrictions 1.35 electric buses replace one existing CNG bus if charging is only at the depot

MAJOR COST ASSUMPTIONS

		BASELINE	LNOx + RNG	ELECTRIC	FUEL CELL
BUS PURCHASE	2015	\$490,000	\$500,000	\$760,000	\$920,000
	2045	\$490,000	\$495,000	\$692,000	\$506,000
MID-LIFE OVERHAUL	2015	\$35,000	\$38,000	\$281,000	\$335,000
	2045	\$35,000	\$38,000	\$237,000	\$135,000
DAILY RANGE	2015	NA	NA	125 mi	NA
	2045	NA	NA	175 mi	NA
FUEL USE	2015	0.48 therm/mi	0.49 therm/mi	2.1 kWh/mi	0.16 kg/mi
	2045	0.48 therm/mi	0.49 therm/mi	1.9 kWh/mi	0.14 kg/mi
FUEL COST		\$0.78/therm	\$0.78/therm	\$0.006/kWh \$0.028/kWh	\$1.60/kg \$4.62/kg

All costs in 2015 \$, and do not include inflation. Inflation assumed to be ~2%/year

Fuel Costs: Higher electricity cost (\$/kWh) for in-route charging, lower for depot charging. Higher hydrogen cost (\$/kg) for electrolysis, lower for SMR

Costs for CNG, RNG, Electricity, and Hydrogen are net of Low Carbon Fuel Standard (LCFS) Credits

MAJOR COST ASSUMPTIONS (CONT)

		BASELINE	LNOx + RNG	ELECTRIC	FUEL CELL	
MAINT COST	2015	\$0.850/mi	\$0.865/mi	\$0.808/mi	\$0.867/mi	
	2045	\$0.850/mi	\$0.850/mi	\$0.808/mi	\$0.859/mi	
FUEL INFRA- STRUCTURE		Future upgrade costs included in \$/therm NG cost	costs included in \$/therm NG cost		\$105,000 /bus (H ₂ production and fuel station)	
DEPOT MODS		NONE	NONE	\$36,000/bus (depot expansion)	\$28,000/bus (H ₂ sensors & ventilation)	

All costs in 2015 \$, and do not include inflation. Inflation assumed to be ~2%/year

DEPOT VS IN-ROUTE CHARGING

- ☐ LACMTA buses average 130 miles/day
 - ➤ To be reliably used on ALL routes, need to have ~170 mile range per charge (30% operational reserve)
- ☐ Current 40-ft electric buses have 325 kWh battery pack
 - Can achieve ~125 mi/charge in Metro service (80% depth of discharge)
 - ➤ With depot-only charging would need 1.35 electric buses for every CNG bus replaced, and dead-head mileage would increase due to in-service bus swaps
- ➤ Alternative: Depot and In-route charging
 - ➤ CNG buses can be replaced one-for one, no increase in dead-head mileage
 - ➤One or more chargers required at every bus lay-over (310 system-wide); assume 10 minutes charge time for every hour of driving

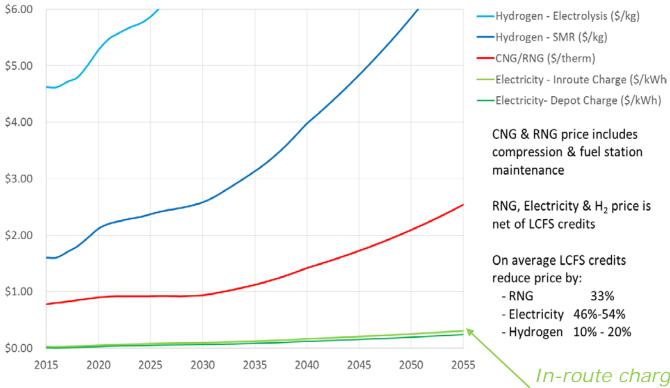
INFRASTRUCTURE

Electric Bus
In-route Chargers
30 kW x 310
"no plug"

Electric Bus
Depot Chargers
23 kW x 2000
"plug-in"

Sized based on daily energy use and available charging time

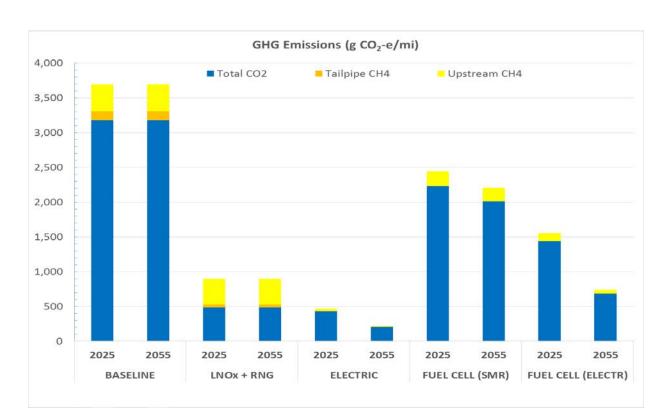
Fuel Cell Bus


On-site H₂ production via
electrolysis or SMR

Sized based on H₂
throughput

MJB & A

FUEL COSTS

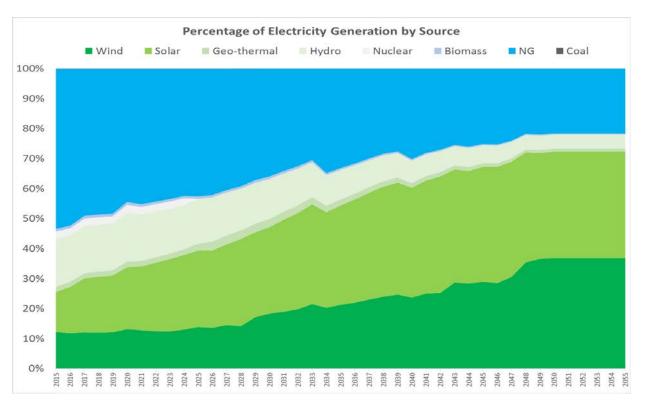


In-route charging higher cost because more during peak periods

GHG EMISSIONS (G CO₂-E/MI)

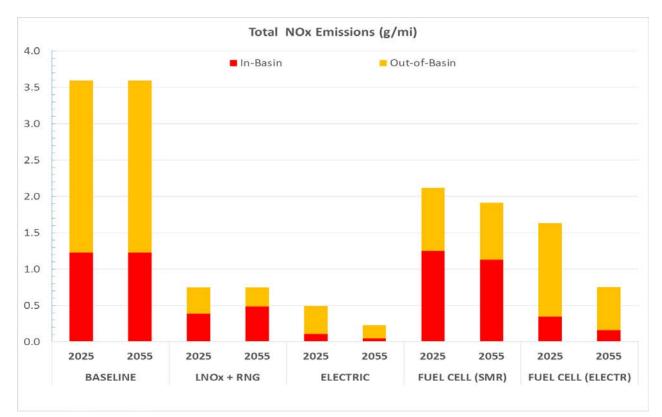
Tailpipe emissions per EMFAC2014 emissions model.

Upstream emissions per CA GREET.


CO₂ shown in chart is total tailpipe plus upstream

RNG assumed to be 100% landfill gas.

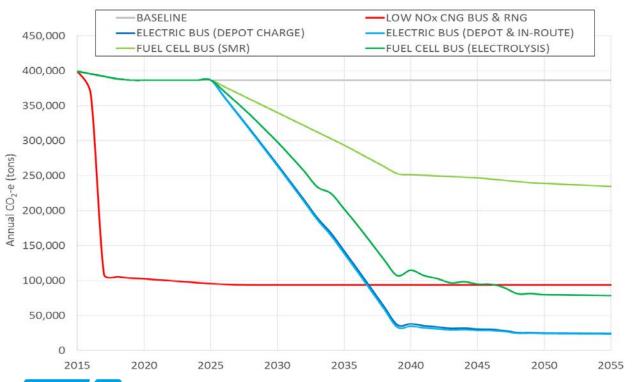
ELECTRICITY GRID MIX


ARB targets for future generation

78% zero emission generation by 2050

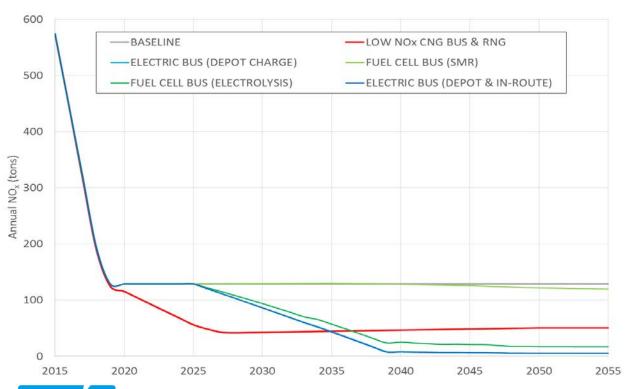
NO_X EMISSIONS (G/MI)

Tailpipe emissions per EMFAC2014 emissions model.


Upstream emissions per CA GREET.

RNG assumed to be 100% landfill gas.

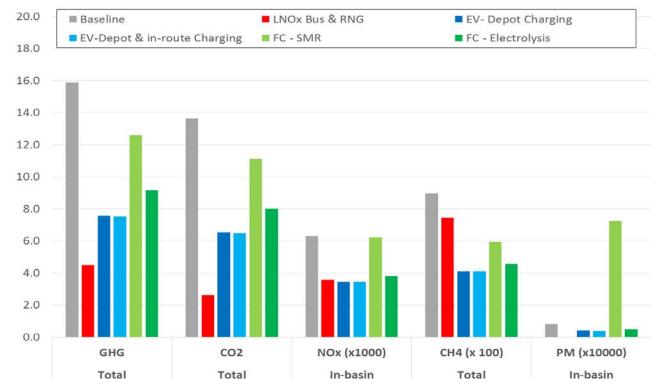
PROJECTED ANNUAL FLEET GHG (TONS CO₂-E)


Significant early reductions from RNG use. Low NOx engine gives minor reduction due to lower tailpipe CH₄

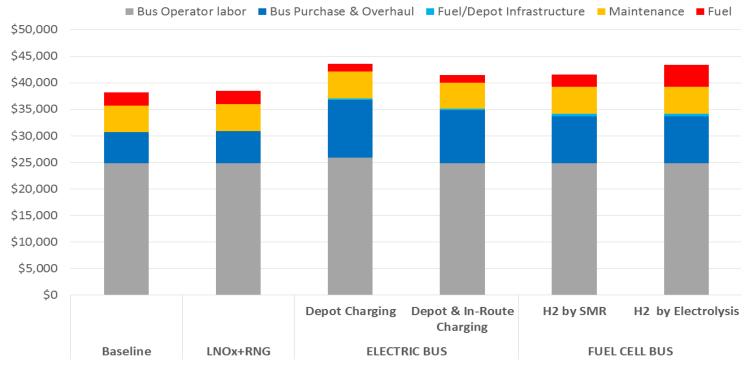
Emissions from H₂ produced by SMR significantly higher than other options

PROJECTED ANNUAL FLEET NO_X (IN-BASIN TONS)

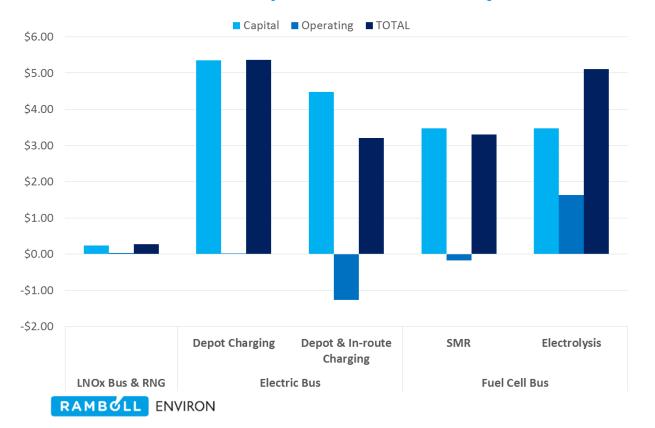
Significant reductions under baseline as fleet turns over to 2010+ engines.


Low NOx engine further reduces emissions

Emissions from H₂ produced by SMR similar to baseline



PROJECTED TOTAL FLEET EMISSIONS 2015 – 2055 (MILLION TONS)



PROJECTED TOTAL FLEET COSTS 2015 – 2055 (\$ MILLIONS)

PROJECTED INCREMENTAL FLEET COSTS 2015 – 2055 (\$ BILLIONS)

Compared to baseline:

- ➤ LNOx+RNG +1%
- ➤ Electric Bus +8%-14%
- ➤ Fuel Cell Bus +9%-13%

EMISSION REDUCTION COST EFFECTIVENESS 2015 – 2055 (\$/TON)

		LNOx + RNG	ELECTRIC BUS		FUEL CELL BUS		
			Depot Charge	Depot & In-route	SMR	ELECTR	
Compared to Baseline	Cost Increase (NPV \$ million)		\$161.3	\$2,154.9	\$1,224.5	\$1,420.7	\$1,992.4
	GHG Reduction (million tons)		11.4	8.3	8.4	3.3	6.7
	In-basin NO _x Reduction (tons x 000)		2.7	2.9	2.9	0.1	2.5
Cost		GHG	\$14	\$259	\$146	\$432	\$296
Effectiver (\$/ton)		IB NO _x	\$59,000	\$755,000	\$427,000	\$20 mill	\$795,000

¹ Assumes that 100% of cost increase attributed to each pollutant

SUMMARY

- \Box Over the next 40 years the use of RNG and transition to Low NO_x CNG engines will be:
 - ➤ More effective at reducing GHGs from the LACMTA fleet than transition to either Electric or Fuel Cell buses
 - ➤ More effective at reducing in-basin NO_x emissions than transition to fuel cell buses, and almost as effective as transition to electric buses
 - ➤ Significantly less expensive than transition to either electric or fuel cell buses
- Emission reductions of both GHG and NO_x from LNO_x engines and RNG are an order of magnitude more cost effective than reductions from transition to electric or fuel cell buses

