The Case for the Stainless Steel Underframe

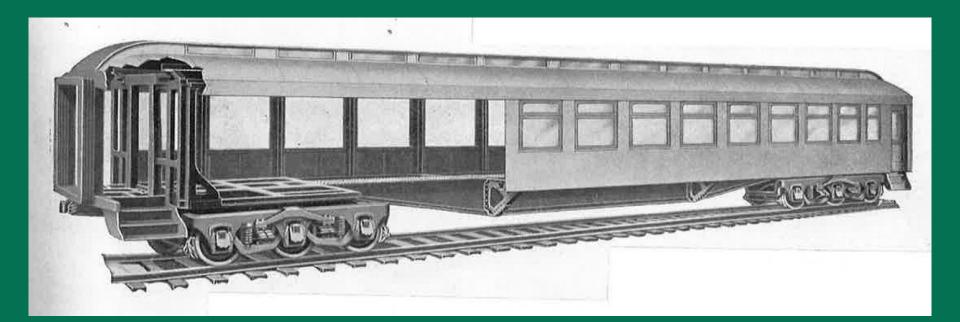
John A. Janiszewski, P.E.

Clifford A. Woodbury, PhD, P.E.

Senior Engineers, LTK Engineering Services Ambler, Pennsylvania, USA

Traditional End Underframe (EUF) Construction

- Primarily HSLA steel
- Welded structure
- Coatings provide corrosion resistance
 - Base metal
 - Dissimilar welds, HSLA to stainless

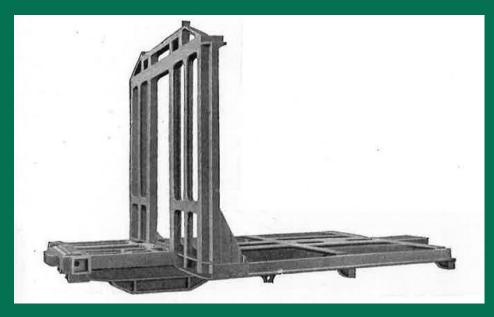


EUF Performance Requirements

- Static strength
- Fatigue resistance
- Corrosion resistance
- Modern CEM requirements
 - Transmittal of forces
 - Replacement of expended CEM parts

Historical View of Passenger Car Design

The Duties and Responsibilities of the Underframe


The Duties and Responsibilities of the Underframe

- Carry passengers, crew, and equipment
- Buff/Draft forces from couplers
- Truck connection at bolsters
- Anchor end-frame collision structure
- Normal service and emergency loads

The Ends of the Underframe

- Multiple duties
 - Fatigue resistant for normal service loads
 - Strong and tough for emergency loads

General Requirements

- Materials light, durable, high strength
- Ease of manufacturing
- Industry state of the art
 - Primarily HSLA
 - Stainless steel interface to balance of underframe
- But, why not a Stainless Steel End
 Upderframe?

HSLA End Underframes

- HSLA meets General Requirements
- But, HSLA corrodes at connections, hidden cavities

Rethinking the use of Stainless Steel in the End Underframe

- Benefits of current low-carbon grades of stainless steel
 - Arc welded fabrication
 - Connections simplified
 - Corrosion issues practically eliminated
- Simplify design and production
- So . . .

A Modest Proposal . . .

 Why not build Stainless Steel cars entirely of low-carbon Stainless Steel, including the End Underframe Units?

Characteristics of an Austenitic Stainless Underframe

- Redesign, not a material substitution
 - Put joints in low stress areas
 - Use cold rolled stainless as much as possible
 - Redesign connections and transitions
 - Continuous members from EUF through side sill
 - Eliminate ring welds where possible

Characteristics of an Austenitic Stainless Underframe

Use low carbon grades

- Prevents sensitization
- Improved atmospheric corrosion resistance
- Mixture of grades and strength levels is possible
 - Welding is compatible with all combinations
 - Appearance not a factor in undercar area

Advantages of an Austenitic Stainless Underframe

No coating necessary

- Eliminates preparation and material
- No stripping and recoating at overhaul and no waste concerns
- Carshell lifetime greatly extended
- Fully recyclable carshell
 - No mixed scrap
 - No disassembly of structural parts

Path to Implementation

- Owner commits to SS EUF in Tech Spec (Option, not base requirement)
- Life cycle cost evaluation
- Vendor selection based on best value, not lowest initial cost
 - "Green" value to be considered

Additional Contributors

- George Hud, PhD, PE
- Luke Morscheck, PE

