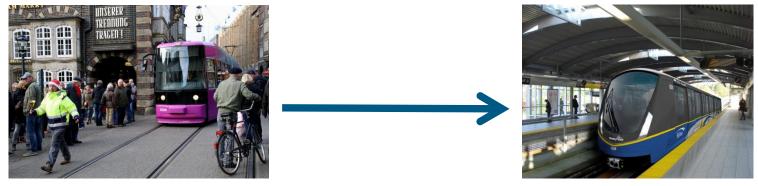
State-of-the-Art in Tramway Safety Technology



John Smatlak- APTA Streetcar Subcommittee 6-13-17

Overview

The spectrum of rail operating environments

Mixed traffic / Line-of Sight Driving

Driverless Metro

Streetcar / Tramway already a very safe mode, and the industry continues to develop further safety improvements

- > Background- System Safety Baseline
- > Recent Innovations
- > Industry Initiatives

Background- System Safety Baseline

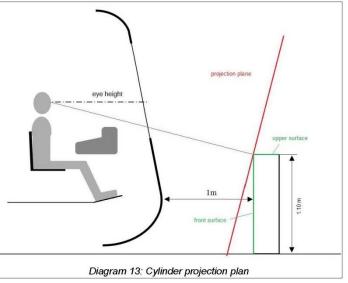
- > A holistic Safety Management System (SMS) approach is required
- Technology offers many helpful tools, but is not a substitute for a system-level approach to safety management

- Line-of-Sight operation in an urban environment has many design challenges
 - > Clearances
 - > Sight lines
 - Segregation from mixed traffic (including minimizing left turns) and signal priority

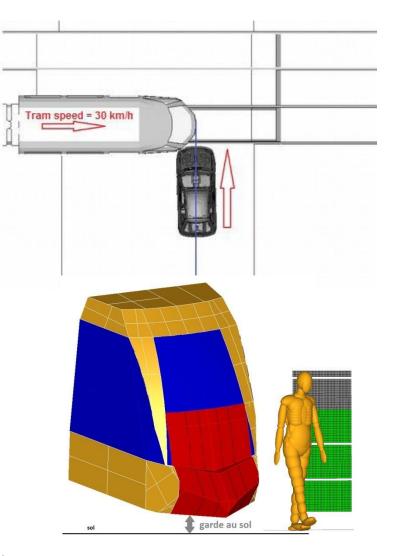
Implemented at best level the corridor will permit

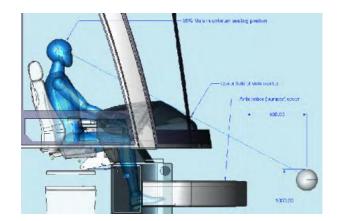
Background- Vehicle Baseline

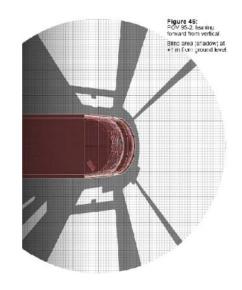
Safety "Checklist" for urban in-street operating environment

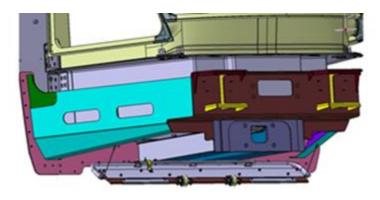

-) General:
 - > Low-floor design
 - > High-performance braking
 - > Door obstacle detection (anti-entrapment)
 - > Following industry standards for CEM carbody, RAMS, Fire Safety
- > Tramway Specific:
 - > Full skirting including trucks and ends, no exposed coupler
 - > Rounded ends / low bumper (deflect, not trap, objects)
 - > Improved cab visibility and operator ergonomics
 - Lighting and audible warnings optimized for operating environment (e.g. headlights flash with horn/bell, LED brake light "stop bars")
 - > Additional standee accommodations

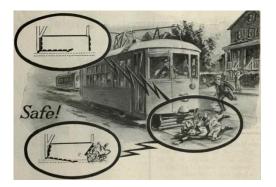
Recent Innovations


- > Refinement of leading end geometry
- > Driver Assist
- > Other carbody design aspects




- New (2016) STRMTG (France)
 Tramway Front End Design
 standard requires:
 - Designing and validating shape of leading end to minimize pedestrian injury
 - Validating effectiveness of underrun protection
 - Evaluating propensity to derail when struck in a perpendicular collision with auto at front corner


- > 2016 revision of STRMTG (France)
 Technical Guide Safety in Tramway
 Driver's Cab
 - > Covers cab visibility and ergonomics
 - Quantifies testing for visibility / blind spots
- > ASME RT-1 (2015)
 - Section 3.2 Leading End Design for Protection of Street Vehicles includes requirements for front end geometry / bumper height, but no criteria for visibility


- Supplementing bumper / underrun protection
 - > Alstom underfloor fender
 - > Bombardier airbag
 - > CAF obstacle deflector

Video: Courtesy of Alstom

State-of-the-Art in Tramway Safety – John Smatlak

Driver Assist

- Application of automotive collision avoidance technologies to tramsreduce stopping distance by improving reaction time
- Driver vigilance and speed enforcement also taking on new urgency following recent accidents

Driver Assist

- > Application of automotive collision avoidance technologies
 - "Early Warning" only
 - > Warning + automatic braking
- > Other "assist" functions:
 - > Provision of energy efficient driving advice ("Eco Driving")
 - > Platform spotting assistance, wrong-side door inhibit
- > Driver Assist in use / testing:
 - > Bosch "Tram Forward Collision Warning System" testing in Hannover
 - > Bombardier / Bosch "DAS" Prototype applications in Frankfurt and Berlin
 - > Survey underway to identify other applications
- > Wayside Supplements
 - > Active speed warning signs similar to traffic signs

Speed / Signal Enforcement

Approaches:

- > Alerting the driver
- > Communicating driver non-compliance to control
- > Preventing overspeed / signal violations through technology (ATP)

Some examples:

- > SIMOVE (GPS-based speed enforcement), developed by tram operator in Tenerife, Spain
- > Alstom Pegasus- Brussels, Marseilles, Rouen, Constantine trams
- Siemens CTS/M- Portland Streetcar- train stop on bridge shared with LRT, Houston LRT signal enforcement

Other Carbody Design Aspects

- > CEM principles firmly established in standards and continuing to evolve:
 - > Holistic concept of safety in place of older approach relying solely on strength
 - > ASME RT-1 and EN 12663/15227 continue to converge
 - > Upcoming revision of CPUC GO-143
- Longer modular vehicles instead of coupled consists
- > Energy absorbing bumpers
- > Interior safety improvements

Industry Initiatives

- European Cooperation in Science and Technology (COST) TU1103
 Operation and Safety of Tramways in Interaction with Public Space
 - > Analysis of accident statistics
 - Value of standardized data collection and recommendations for ideal accident report
 - > Study of tramway infrastructure elements and associated hazards
 - > Success stories
- > UNIFE Technical Report for Interior Passive Safety in Railway Vehicles (2014)
- > ASME RT Committee examining "mixed fleet" question (newer CEM and older strength-specified designs) as part of next RT-1 revision.
- Driverless trams- e.g. Alstom 2017 test in Paris; autonomous operation to depot

> Others?

Literature Review (work in progress)

- > Compact Train Stop / Magnetic Transmission (CTS/M), Siemens brochure 2014
- > Technical Report for Interior Passive Safety in Railway Vehicles, UNIFE 2014
- European Cooperation in Science and Technology (COST) TU1103 Operation and Safety of Tramways in Interaction with Public Space Final Report, December 2015
- ASME RT-1 Safety Standard for Structural Requirements for Light Rail Vehicles (Revised 2015)
- > Can Driver Assistance Systems (DAS) deliver safer LRT? UITP Workshop 3/25/15
- > Drive assistance systems spread from cars to trams UITP 4/14/15
- > Driver Assistance System, Bombardier brochure 2015
- CBTC for tram: towards higher levels of automation, Sebastien Lacroix, SYSTRA 2015
- Driver assistance system for avoidance of collision on LRVs, Alex Robinson Bombardier CORE 2016 Conference
- > Driver assistance systems, BOSCH brochure 2016
- > Alstom Pegasus System presentation 2016
- > Is the world ready for driverless trams? Tramways & Urban Transport 1/23/17

Summary

- > More new tools for the toolkit!
- > Assembling working group
- > Research questions:
 - Identify issues related to applying Driver Assist / ATP technologies in line-of-sight operations (e.g. in mixed traffic tramway)
 - Identify other examples / suppliers- collaboration with carbuilders / suppliers
- A lot has happened with standards in the last 10 years, including new ones mentioned here; which might be useful for application here in the USA?

Questions?