Introducing New CEM Designs to Legacy Systems

Chris Walker, PE Principal Engineer LTK Engineering Services Charlotte, NC

Agenda

• CEM Definitions, Devices & Principles

Recently Issued CEM Based Standards

• Challenges with legacy systems

• CEM Limitations

CEM – What is it?

Crash Energy Management System – any structural system used as a means of dissipating kinetic energy

In braking, kinetic energy is dissipated via:
Friction Braking: Heat @ brake pads/disc
Dynamic Braking: Heat @ resistor grids

CEM – What is it?

During collisions, kinetic energy is dissipated via crushing, collapsing, and fracturing of mechanical structures.

CEM systems use this dissipation of kinetic energy to reduce deceleration rates experienced by passengers.

$KE = \frac{1}{2}mv^2$

$\Delta KE = W = Fd = (m^*a)d$ $\Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = (m^*a)d$

$$\frac{{v_i}^2}{2d} = -a$$

$\Delta KE = W = Fd = (m^*a)d$ $\Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = (m^*a)d$

$$\frac{{v_i}^2}{2d} = -a$$

$KE = \frac{1}{2}mv^2$

$\Delta KE = W = Fd = (m*a)d$ $\Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = (m*a)d$

Occupied Volume

Crush Zones

Simplified Mass-Spring Model

Old Model

CEM Devices

- Anti-climber
- End Frame Devices
 - Structural fuse
 - Crush tube
 - Crash box
 - Structural hinge

Coupler

- Draft gear
- Expansion tubes
- Shear bolts

CEM Design Principles

Maximize energy absorption

• Minimize deceleration rates

• Maintain underframe alignment

CEM Design Principles

• Preserve occupied volumes

• Ensure progressive collapse of CEM devices

• Maintain operator survival space

Standards for CEM Design

- ASME RT-1
 - Streetcars
 - LRVs
- ASME RT-2
 - Heavy Rail Transit
- NPRM 49 CFR 238 (RSAC ETF Guidelines)
 - Tier I vehicles

Integrating New CEM Designs to Legacy Systems

- Match colliding interface of legacy equipment
 - Anti-climber height & arrangement

 Use approximations of underframe stiffness in spring-mass models to simulate legacy equipment performance

Limitations of CEM

• CEM is not a panacea for passenger safety

• CEM cannot supplant or replace safe operating practices

 Standard collision scenarios analyze impact speeds of 15-25 mph

Chris Walker, PE Principal Engineer LTK Engineering Services Charlotte, NC

