Rail Clip Failure Investigation at Sound Transit

Thomas Bergen James T. Nelson Wilson Ihrig

Hugh Saurenman ATS Consulting

U-Link Extension Opens March 2016

Clip Failures – As of April 11, 2017

	North Bound Track				South Bound Track				
	East Rail		West Rail		East Rail		West Rail		
	Field Side	Gage Side	Field Side	Gage Side	Field Side	Gage Side	Field Side	Gage Side	
GAUGE/FIELD	4	5	5	6	18	22	36	21	
EAST/WEST	9		1	11		40		57	
NORTH/SOUTH	20			97					
TOTAL	132								

Map of Clip Failures

Clip Failure

Rail Deflection Measurement

Longitudinal Deflection

Top Plate Vertical Deflection and Rotation

Top Plate Lateral

Southbound Track Rail Rotation

Southbound West Rail and Fastener Top Plate Rotation

Longitudinal Deflection

Accelerometers

Acceleration Spectra – Northbound Track

Acceleration Spectra – Southbound Track

Broadband Vertical Acceleration

Lab Test - Vertical Accel

Laboratory Test – E-Clip

Rail Roughness Prior To Startup

Rail Clips

Conclusions

- Center truck produces largest rail rotation and lateral displacement
- No evidence of clip toe load being overcome
- No clear evidence of fatigue due to relative deflection of rail and fastener
- Acceleration spectrum contains strong peaks above 800Hz
- Laboratory tests indicate system resonance at about 800 to 900Hz
- Amplification of rail vibration acceleration at nominally 800 to 900Hz

Outline of ATS Presentation

- Background
- Measurements that were performed
- Analysis
- Conclusions
- Lessons Learned
- Moving Forward

Background...

See Thom's previous presentation...

Program included:

- Two sites
 - UWS to CHS (subway)
 - SEA to ALS (aerial)
- Visual inspection of the rails
- Rail roughness/corrugation measurements using a Corrugation Analysis Trolley
- Noise measurements on the safety walks
- Onboard noise measurements using the CorrTracker system

Visual Inspection

• UW Station to Capital Hill Station

Visual Inspection

• SeaTac Station to Angle Lake Station

Painted rail after one day in service

Raw Rail Roughness, UWS-CHS, 4 runs

Rail Rough Spectrums

Roughness Wavelengths, Site 1

Wavelength, mm	Wavelength, in.	Frequency, Hz @ 55 mph	
28.99	1.14	848	
14.93	0.59	1647	
10.0	0.39	2459	
7.81	0.31	3148	
6.06	0.24	4057	
5.26	0.21	4674	
4.94	0.19	4977	

Roughness Spectrogram

Safety Walk Noise, Tunnel

Safety Walk Noise and Roughness

Onboard Noise, UWS to CHS

Onboard Noise, UWS to CHS

Conclusions

- Rail grinding left ~1.1" wavelength.
- At 55 mph, 1.1" wavelength causes vibration at 848 Hz.
- There are short segments where this wavelength disappears.
- Resonance of rail clips is 800 to 900 Hz.
- Rail clip failures appear to be greater where 800 to 900 Hz peak is stronger.
- Reducing or increasing the grinder speed would change the wavelength and could help resolve problem.

General Observations

- Future measurements should include track time for follow up inspections.
- Onboard measurements can be a valuable tool for identifying problem areas.
- Rail grinding specifications should be updated to address this issue.
- Sound Transit is investigating various approaches.

Acknowledgement

- Shankar Rajaram / Sound Transit
- Xiangdong Han / Sound Transit
- Jason Bailey/ Sound Transit
- Anthony Bohara / HDR

Thank You!

Questions?

