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FTA-Funded Resilient Concrete Crossties
and Fastening System Research Program

Objectives

» Develop resilient concrete crosstie design solutions for light,
heavy, and commuter rail transit operators

Methodology

» Quantify concrete crosstie and fastening system demands
when subjected to rail transit loading environments

Key Parameters to Quantify

» Loading Environment (lateral and vertical wheel/rail loads)
» Crosstie Bending Moments (rail seat and center)

» Rail Displacements (vertical and lateral)
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FTA Project Approach

‘stening System Designs for Light Rail,
Rall, and Commuter Rall Transit

y rall, and commuter rail infrastructure that
o account their unique lading conditions.
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s (listed on right), ks conducting a survey ©
viermine the most criical aspects of @
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s that place increased stress on
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FTA Project Transit Partner Agencies

MELIa:

The way to really fly.

_ m New York City Transit

UNTVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

(Two Sites; Curve & Tangent)
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FTA Project Field Instrumentation Map

Metrics to quantify:

(crosstie and fastening
777 system design, and load
' environment characterization)

| » Crosstie bending strain
(crosstie moment design)

‘ » Vertical and lateral input loads

» Rail displacements
= (fastening system design)

» Crosstie temperature gradient

(Ambient Temperature)

Crosstie Bending Strain Rail Displacement (Base Vertical)
v \Vertical and Lateral Load (Wheel Loads) Thermocouple
Rail Displacement (Base Vertical, Base Lateral) Laser Trigger
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Installation of St. Louis MetroLlnk Field Site m







Vertical Rail Loads
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Vertical Rail Loads

St. Louis MetroLink (Tangent)
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Modal Comparison: Vertical Rail Loads EI
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Load Data in AREMA Chapter 30 (2018)

Table 30-1-3. AW0 (Empty Load) and AW3 (Crush Load) Axle Loads for Light Rail, Heavy Rail and

Commuter Rail Transit Vehicles & °

AWO0 Static Wheel Load (kips) AW?3 Static Wheel Load (kips)
Vehicle Type Mean Minimum | Maximum Mean Minimum | Maximum
Light Rail Vehicle!” 7.9 4.8 9.1 10.9 6.1 13.0
Heavy Rail Vehicle'' 9.4 6.8 11.6 12.8 8.1 16.8
Commuter Railcar'? 10.6 10.6 20.4 20.0 15.2 28.4
Commuter Locomotive'? 327 25.0 372 N/A N/A N/A

» These values are intended to represent the North American loading
regime and are not intended to be used for design
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FTA Project Field Instrumentation Map

Metrics to quantify:

1 2 3 4 5 6 » Vertical and lateral input loads
(crosstie and fastening
d 4 1l 4 system design, and load
- - —— environment characterization)
» Crosstie bending strain
| | | | (crosstie moment design)

» Rail displacements
(fastening system design)

T T » Crosstie temperature gradient

(Ambient Temperature)

I Crosstie Bending Strain Rail Displacement (Base Vertical)
Vertical and Lateral Load (Wheel Loads) Thermocouple
Rail Displacement (Base Vertical, Base Lateral) Laser Trigger
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Percent Exceeding (%)

Center Negative (C-) Bending
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Percent Exceeding (%)

Ral

| Seat Positive (RS+) Bending
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Field Experimentation Takeaways

>

Loading environment is significantly different at each transit mode
» Design of any infrastructure component should consider this

Wheel loads exceeded an impact factor (IF) of 3 rarely (<0.05%)
 AREMA recommends designing concrete crossties with an IF of 3

The reserve flexural capacity factors of safety ranged from 2 — 6

This provides an opportunity to optimize not just the crosstie
design but track structure

« “Savings” from reductions in concrete, steel, & handling could be
reallocated into resilient materials (under tie pads, ballast mats, etc.)

Resilient materials could:
» Reduce maintenance costs (e.g. increase time between tamping, etc.)
* Reduce urban pollution (i.e. ground borne noise and vibration, etc.)
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Concrete Crosstie Design Considerations

Rail Seat Flexure Rail Seat Robustness

Center Flexure
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Initial Prototype Experimentation

Concurrent with Field Data Collection

Purpose:

» |dentify how failure modes change varying key parameters
« Determine a method to ensure a “safe” ultimate failure

» Develop, calibrate, and validate a finite element model
Various Trials

» Prestressing quantity and arrangement
» Assist model calibration

» Synthetic Fibers in Concrete
* Quantify failure mode/benefits of fibers

» Shear and flexural reinforcement
« Quantify effect of stirrups on failure mode (shear/flexural)
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Prototype Crosstie Manufacturing
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Qualitative Prototype Results

= Standard Crosstie: Failure representative of typical crossties (i.e. shear)

'--.,\\‘

= Fiber Prototype: Failure with more cracks, reduced crack width and non-shear
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Final Prototype Development

Design Optimization Framework

- B | e
* RS+ and C- set
from field data

 Calculate
cracking moment
through section
analysis varying:
» Section depth,
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wires

« Eccentricity

N

e Run C- and RS+
Simulations

» Quantify cracking
and ultimate
moments
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Preliminary Analysis: Work Flow
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Theoretical Optimization Framework
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Path Forward: Installation and Monitoring
at MetroLink & Project Dissemination

» Install Prototypes
« Fall 2018

» Monitor Performance
» Through Spring 2019

» Project Dissemination
« Loading Environment
* Bending Demands
» Fastener Displacement
* Design Framework
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Thank you for your attention!

J. Riley Edwards, P.E.
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