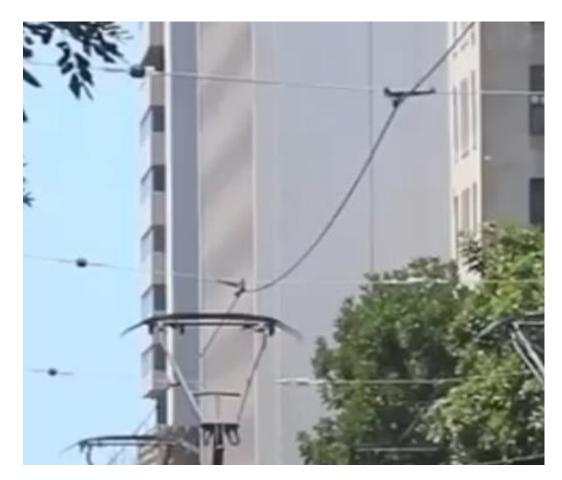
Overhead Contact System Constant Tensioning With Spring Devices

Peter Hrovat P.Eng.

Toronto Transit Commission Manager-Overhead Engineering Toronto, Ontario, Canada

Key Presentation Take-Aways


- Origin of the Constant Tension Spring
- Variable tension/constant tension difference
- Types of tensioning equipment
- Constant Tension Springs (CTS)
- CTS operating principles
- Advantage of CTS
- CTS at Toronto Transit Commission

Variable Tension/Constant Tension

- All wires in tension have sag
- Sag is pronounced with variable tension (VT)
- Radial load increases with VT
- Constant tension controls sag and radial load

Sag in Contact Wire

$$D = \frac{WS^2}{8T}$$

$$D = Sag \text{ in Feet}$$

$$W = Weight \text{ of wire in lb/ft}$$

$$S = Span \text{ length in ft}$$

$$T = Tension \text{ in lbs}$$

Radial Load in Contact Wire Variable/Constant Tension

Contact Wire Tension 0° F = 3,512 lbs 104° F = 1,109 lbs

Radial Load for 16° 0° F = 977 lbs 104° F = 318 lbs

Constant Contact Wire Tension $0^{\circ} F = 2,000 \text{ lbs}$ $104^{\circ} F = 2,000 \text{ lbs}$ Radial Load for 16°

Radial Load for 16 0° F = 556 lbs

5

Tensioning Equipment

6

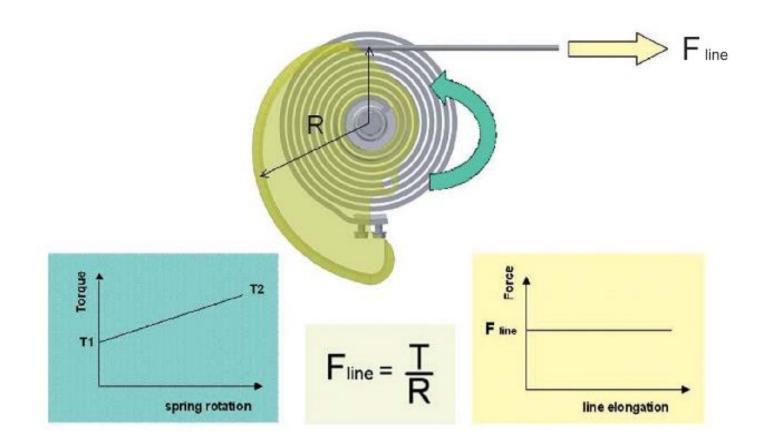
- Hydraulic tensioners
- Gas tensioners
- Balance weights
- Springs-variable
- Springs-Constant

Tensioning Equipment

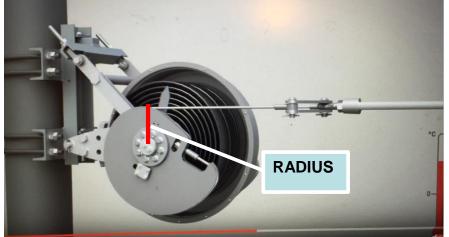
Constant Tension Springs

100 1 100 1 320 1 200 5 1 000

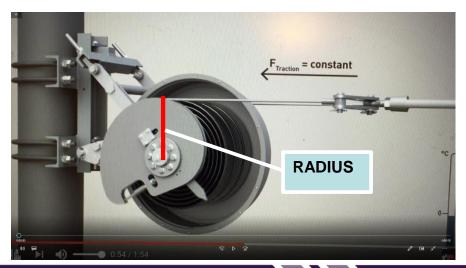
and in the


Origin of Constant Tension Spring

- Designed by Matti Insco Williams student at UMass
- Developed at MBTA, Boston
 - Two units Installed 1991 on line B of the Green Line


• Still in service today

Constant Tension Spring Operating Principle



Cam Movement Over Temperature Range Hot to Cold

Expanded wire at hot temperatures

Contracted wire at low temperatures

Advantage of Constant Tension Springs

- Less Costly
- Easy Installation
- Aesthetically Pleasing
- Simple mounting
- Reduced tension losses

Constant Tension Springs Toronto Transit Commission

Overlap Transition Clamp

Joint Use Pole-Route 514-Cherry Street

