NYCT Maintenance Innovation Using Research

Eric E. Magel

Principal Engineer National Research Council, Canada Ottawa, Canada

Key Presentation Take-Aways

- A collaborative research program was developed to demonstrate opportunities and benefits of integrated data analytics.
- Several technologies for continuously monitoring wheel/rail performance have been installed at NYCT on Flushing Line 7.
- These have been effective in identifying problem areas, practices and validating remedial efforts

Collaborative Research Team

Data Collection Consist (DCC)

- 2 instrumented wheelsets
- Give accurate measurements of wheel/rail contact forces (vertical, longitudinal, lateral)

- Accelerometers, acoustic recording equipment and propulsion energy recording equipment
- Part of an 11 car consist in revenue service

Wayside Technologies

NYCT – Track Geometry Car and Host Site #7 Line

Flushing Line At A Glance

- □ 27.5 Miles of Track
- 22 Stations
 - 34th Street-Hudson Yards opened in September, 2015
- Average Daily Ridership:
 - Weekday = 525,000
 - Saturday = 350,000
 - Sunday = 300,000
- 7 line (tied with the 6 line) has the most frequency of service in the entire system.
- 27 Trains per hour in each direction during Weekday Peak

Track Geometry Car

WHEEL WEAR ANALYTICS

Back of Flange Wear

Back of Flange Values

THE IMPACT OF RAIL CORRUGATION ON ENERGY CONSUMPTION

Keith Cummings – Dayton T. Brown

NB Track CC2 Energy Consumption

Hudson Yds. 34th St. Curve

OUTCOMES FROM THE TBOGI AND L/V WAYSIDE SYSTEMS

Eric Magel and Merrina Zhang – NRC Canada Denis D'Aoust – Wayside Inspection Devices John Mazza - Instrumentation Services Inc.

L/V Values for DCC cars

- Shows L/V values for DCC compared with distribution for entire fleet.
- Identifies car 7505 as an outlier.

DCC Interaxle Misalignment

W/R FORCES MEASURED BY IWS

Yan Liu - NRC Canada

High Force due to Tight Flangeway Clearance at Turnouts

Turnout N/O
Willets Point
where high
IWS forces
were identified

09 April 2017

21 May 2017

Trending Plot - Guard Rail L/V @ East Swicth of Willets Point on C2 Track

Information provided by NYCT

Track C2 N/O Willets Point, Switch 755B - January 30 vs. June 20, 2017

N/O Willets Point, Sw. 755B, track C2 January 30, 2017

N/O Willets Point, Sw. 755B, track C2
June 20, 2017

2g Vertical Force Oscillation

- Track gauge: 0.3" to 0.4" tight.
- All the running rails are 39' long, bolted
- 20+ running rails replaced btw Dec. 2017 and Feb.2018
- New rails are interspersed with old ones

IWS Force vs Track Geometry

TGC runs on October 23, 2017

Priority 1 dip

From DAT	rom DATA file of NYCT Spet TG rur			
28371	283	71	-0.547	-0.383
28372	283	72	-0.633	-0.598
28373	283	73	-0.703	-0.805
28374	283	74	-0.762	-0.992
28375	283	75	-0.805	-1.164
28376	283	76	-0.828	-1.316
28377	283	77	-0.848	-1.43
28378	283	78	-0.855	-1.504
28379	2 83	79	-0.816	-1.551
28380	283	80	-0.742	-1.543
28381	283	81	-0.625	-1.48
28382	283	82	-0.473	-1.352
28383	283	83	-0.309	-1.133
28384	283	84	-0.156	-0.84

An IWS run on March 20, 2018 confirmed that the force peak has been removed

Traction Coefficient - CC1

TOR-FM reduces T/N, but there is quite a variation from day to day.

Appears to have a significant effect only on first third of curve at current settings.

MEASURED ACCELERATIONS AND WHEEL/RAIL NOISE MEASUREMENTS

Keith Cummings - Dayton T. Brown Hugh Saurenman and Shawn Duenas - ATS Consulting Raman Pall - NRC, Canada

Approximately 280Hz at 29mph equates to 1.8 inch wavelength

Wavelength averages 1.6 inches in this photo

Future Steps

- Complete wheel/rail contact analytics
 - Effective conicity, Contact Stress, Wear, Optimal Shapes
- Impact of test wheel profile on forces and wear
- Impact of friction management at Hudson 34th curve
- Reporting
- Longer term: automatic import, alignment, analysis and reporting

Thank You

Eric E. Magel

Eric.Magel@nrc-cnrc.gc.ca

+1 250 317 0205