Preventing LRV Signal Stop Overruns in Street Running Territories

Lee Castellion
Senior Systems Consultant
Denver, CO

Paul Padegimas
Senior Rail Systems Planner
Tempe, AZ

LTK Engineering Services

2018 Rail Conference
Acknowledgments

Leon Bukhin
Los Angeles County Metropolitan Transportation Authority

Frank Nicholas
Venice CA

Tony Tiritilli
Los Angeles County Metropolitan Transportation Authority

David Turner
Venice CA
Agenda

1. Problem Statement
2. Actions
3. Scenarios
4. Technologies
5. Recommendations
Problem Statement

- LA LRVs operate in street running mode
- Distractions and conflicting indications
- Drivers occasionally overrun interlocking stop signal!
 - Agencies must implement equipment / procedures to reduce incidence of SSOs
Actions Taken

• Reviewed
 – Four scenarios where SSOs happen
 – Four technologies to prevent SSO
 – Inspector General commissioned report:
 • *Review of Metro Safety Culture And Rail Operational Safety* (December 2016)

• Ranked solutions and made recommendations
Scenarios Reviewed

- Scenario 1: Nears ide Station Stop
- Scenario 2: Nears ide Run Through
- Scenario 3: No Stop Near Interlock
- Scenario 4: Reverse Running
- Reviewed where not to stop, safe stopping distances and distractions
Scenario 1: Nearsida Station Stop
Train stopped at station before interlocking

Station Interlocking Signal

× = Intersection(s) to consider not blocking.
Scenario 2: Nearsaside Run Through

Train at 35 mph, not stopping at station

Note: Used 650 feet median estimate of LRV safe stopping distance when at 35 mph. Not the typical and not the worst case.
Scenario 3: No Stop Near Interlock
Normal Ops, No Station Stops near Interlocking
Scenario 4: Train Reverse Running

Interlocking switch points

Train in Reverse Running
Technologies Evaluated

- Existing Cab Signal System
- Wayside RFID Tags and Beacons
- GPS Based Train Control, Continuous Backhaul and Optional Wayside Communications
- Collision Avoidance System

Pros and Cons are LA Metro specific
Existing Cab Signal System

- Manufactured by Ansaldo
- Currently:
 - ATP on dedicated line sections
 - Speed limit in street running mode
- Type I and enhanced Type II
- Pro: Used now by Metro and in all vehicles
- Pro: Installation and operations friendly
Wayside RFID Tags and Beacons

- IG Report: Siemens Trainguard ZUB-200
- Overlay system
- Intermittent Protection Enforcement Braking
- Pro: Designed for heavy and light rail service
- Con: Must install on all 400+ LRVs
- Con: Must integrate with existing onboard equip.
- Con: Installation, operational risks and $$
GPS Positive Train Control / Backhaul & Wayside Comms

- E.g., Interoperable Electronic Train Management System (I-ETMS)
- Continuous radio to train comms, PTC 220 MHz/Other technology
- Radios at wayside points, optional
- Pro: Provides braking curve
- Con: Not designed for light rail
- Con: Acquire spectrum
Collision Avoidance System

- Designed for protecting work zones
- Provides notification when nearing work zone
- Pro: Inexpensive equipment
- Con: Three new pieces of equip. per LRV
- Con: Non-vital and non-directional
- Con: A novel application
Stop Signal Overrun Technology Evaluation Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Possible Values</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ease of Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Designed for and proven in light rail service</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Currently used at Metro</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Risk of challenges when integrating with existing SCADA system</td>
<td>1,2,3</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Effort needed for updating Metro’s operating rules for new system</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Effort needed for integrating with existing LRV’s</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Effort needed for integrating with existing ATC system</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2 Operational Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 System complexity impact on operations and maintenance</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Installation impact on operations for LRVs</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Installation impact on operations for the wayside</td>
<td>1,2,3</td>
<td>2</td>
</tr>
<tr>
<td>2.4 During operation</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2.5 Risk of negative reliability and service availability impact</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2.6 Impact on user training</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>2.7 Risk vendor does not accept liability for usage</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>3 Other Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Risk that safety is neither equivalent nor better than current system</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Cost of procuring equipment</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>3.3 Cost of wayside and LRV installation and integration</td>
<td>1,2,3</td>
<td>2</td>
</tr>
<tr>
<td>3.4 Risks of regulatory approvals delaying implementing technology</td>
<td>1,2,3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17 to 51</td>
<td>48</td>
</tr>
</tbody>
</table>
Recommendation for LA Metro

Augment existing Cab Signal System

• Least disruptive installation
• Least disruptive to operations
• Least impact to onboard ATC equipment
 – Only software change for 400+ vehicles
• Staff already fully familiar
• Should be most cost-effective
Metro has 2 Cab Signal Systems: I & II

- **Type I:** 100 Hz / 250 Pulse Code
 - Code rate determines discrete speed command
 - On older lines

- **Type II:** Audio Frequency Shift Key (FSK) with 91 bit digital message, containing:
 - Speed, distance to go, speed at distant location
 - Location info, other instructions
 - Adds braking curves, better passenger comfort
 - On newer lines
Recommendation for LA Metro

LA Metro Cab Signal Line Modes

<table>
<thead>
<tr>
<th>Line</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metro Blue Line (MBL)</td>
<td>x</td>
</tr>
<tr>
<td>Metro Green Line (MGL)</td>
<td></td>
</tr>
<tr>
<td>Pasadena Gold Line (PGL), including the Eastside Extension</td>
<td>x</td>
</tr>
<tr>
<td>Exposition</td>
<td>x</td>
</tr>
<tr>
<td>Crenshaw Line (Future)</td>
<td></td>
</tr>
<tr>
<td>Foothill Extension</td>
<td>x</td>
</tr>
<tr>
<td>Regional Connector (Type I) (Future)</td>
<td>x</td>
</tr>
</tbody>
</table>
Recommend Evaluate Type II Cab Signal

- Goal: Suitable speed profiles and stopping locations to maintain normal operation and protect signals at stop. For example:
 - Near-side, far-side station stop, and run-thru
 - Don’t stop LRV blocking an intersection
 - Make all signal aspects and indications consistent across all modes!
Recommendation for LA Metro

Evaluate Type II Cab Signal Issues for SSO

- Locations for loops – site-specific
- Basis for stopping distance calculation: Must consider safe braking and actual stopping location under typical adhesion conditions
- Integration with Aspect Display Unit and Train Operator Display
Key Presentation Takeaways

- Determine scenarios to protect
- Determine evaluation criteria specific to agency
- Rank solutions against criteria
- Consider future needs when choosing
- Design protection specifically for each interlocking and scenario