Preventing LRV Signal Stop Overruns in Street Running Territories

Lee Castellion

Senior Systems Consultant Denver, CO

Paul Padegimas

Senior Rail Systems Planner Tempe, AZ

Acknowledgments

Leon Bukhin

Los Angeles County Metropolitan Transportation Authority

Frank Nicholas

Venice CA

T U R N E R

Tony Tiritilli

Los Angeles County Metropolitan Transportation Authority

David Turner

Venice CA

T U R N E F

Agenda

- 1. Problem Statement
- 2. Actions
- 3. Scenarios
- 4. Technologies
- 5. Recommendations

Problem Statement

- LA LRVs operate in street running mode
- Distractions and conflicting indications
- Drivers occasionally overrun interlocking stop signal!

- Proposed FTA General Directive 17.1 (January 2017)
 - Agencies must implement equipment / procedures to reduce incidence of SSOs

M Actions Taken

- Reviewed
 - Four scenarios where SSOs happen
 - Four technologies to prevent SSO
 - Inspector General commissioned report:
 - Review of Metro Safety Culture And Rail Operational Safety (December 2016)
- Ranked solutions and made recommendations

Scenarios Reviewed

- Scenario 1: Nearside Station Stop
- Scenario 2: Nearside Run Through
- Scenario 3: No Stop Near Interlock
- Scenario 4: Reverse Running
- Reviewed where not to stop, safe stopping distances and distractions

Scenario 1: Nearside Station Stop

Train stopped at station before interlocking

 \mathbf{X} = Intersection(s) to consider not blocking.

Scenario 2: Nearside Run Through

Train at 35 mph, not stopping at station

= Start of safe stopping distance. **Note:** Used 650 feet median estimate of LRV safe stopping distance when at 35 mph. Not the typical and not the worst case.

Scenario 3: No Stop Near Interlock *Normal Ops, No Station Stops near Interlocking*

M Scenario 4: Train Reverse Running

Technologies Evaluated

- Existing Cab Signal System
- Wayside RFID Tags and Beacons
- GPS Based Train Control, Continuous Backhaul and Optional Wayside Communications
- Collision Avoidance System

Pros and Cons are LA Metro specific

Existing Cab Signal System

- Manufactured by Ansaldo
- Currently:
 - ATP on dedicated line sections
 - Speed limit in street running mode
- Type I and enhanced Type II
- Pro: Used now by Metro and in all vehicles
- Pro: Installation and operations friendly

 IG Report: Siemens Trainguard ZUB-200

- Overlay system
- Intermittent Protection Enforcement Braking
- Pro: Designed for heavy and light rail service
- Con: Must install on all 400+ LRVs
- Con: Must integrate with existing onboard equip.
- Con: Installation, operational risks and \$\$

GPS Positive Train Control / Backhaul & Wayside Comms

- E.g., Interoperable Electronic Train Management System (I-ETMS)
- Continuous radio to train comms,
 PTC 220 MHz/Other technology
- Radios at wayside points, optional
- Pro: Provides braking curve
- Con: Not designed for light rail
- Con: Acquire spectrum

Collision Avoidance System

- Designed for protecting work zones
- Provides notification when nearing work zone
- Pro: Inexpensive equipment
- Con: Three new pieces of equip. per LRV
- Con: Non-vital and non-directional
- Con: A novel application

Typical Evaluation Scorecard

Stop Signal Overrun Technology Evaluation Criteria				
	Criteria	Possible Values	Score	
1 Ease of Implementation				
1.1	Designed for and proven in light rail service	1,2,3	3	
1.2	Currently used at Metro	1,2,3	3	
1.3	Risk of challenges when integrating with existing SCADA system	1,2,3	2	
1.4	Effort needed for updating Metro's operating rules for new system	1,2,3	3	
1.5	Effort needed for integrating with existing LRV's	1,2,3	3	
1.6	Effort needed for integrating with existing ATC system	1,2,3	3	
2 Operational Impact				
2.1	System complexity impact on operations and maintenance	1,2,3	3	
2.2	Installation impact on operations for LRVs	1,2,3	3	
2.3	Installation impact on operations for the wayside	1,2,3	2	
2.4	During operation	1,2,3	3	
2.5	Risk of negative reliability and service availability impact	1,2,3	3	
2.6	Impact on user training	1,2,3	3	
2.7	Risk vendor does not accept liability for usage	1,2,3	3	
3 Other Items				
3.1	Risk that safety is neither equivalent nor better than current system	1,2,3	3	
3.2	Cost of procuring equipment	1,2,3	3	
3.3	Cost of wayside and LRV installation and integration	1,2,3	2	
3.4	Risks of regulatory approvals delaying implementing technology	1,2,3	3	
Total 17 to 51		48		

Augment existing Cab Signal System

- Least disruptive installation
- Least disruptive to operations
- Least impact to onboard ATC equipment
 - Only software change for 400+ vehicles
- Staff already fully familiar
- Should be most cost-effective

Metro has 2 Cab Signal Systems: I & II

- Type I: 100 Hz / 250 Pulse Code
 - Code rate determines discrete speed command
 - On older lines
- Type II: Audio Frequency Shift Key (FSK) with 91 bit digital message, containing:
 - Speed, distance to go, speed at distant location
 - Location info, other instructions
 - Adds braking curves, better passenger comfort
 - On newer lines

LA Metro Cab Signal Line Modes					
Lina	Mode				
Line	Type I	Type II			
Metro Blue Line (MBL)	Х				
Metro Green Line (MGL)		х			
Pasadena Gold Line (PGL), including the Eastside Extension	х				
Exposition	Х				
Crenshaw Line (Future)		Х			
Foothill Extension	Х				
Regional Connector (Type I) (Future)	х				

Recommend Evaluate Type II Cab Signal

- Goal: Suitable speed profiles and stopping locations to maintain normal operation and protect signals at stop. For example:
 - Near-side, far-side station stop, and run-thru
 - Don't stop LRV blocking an intersection
 - Make all signal aspects and indications consistent across all modes!

Evaluate Type II Cab Signal Issues for SSO

- Locations for loops site-specific
- Basis for stopping distance calculation: Must consider safe braking and actual stopping location under typical adhesion conditions
- Integration with Aspect Display Unit and Train Operator Display

Key Presentation Takeaways

- Determine scenarios to protect
- Determine evaluation criteria specific to agency
- Rank solutions against criteria
- Consider future needs when choosing
- Design protection specifically for each interlocking and scenario

