The Caltrain Station Planning Toolbox

Elizabeth Scanlon
Caltrain, Director of Planning
San Carlos, California

Nathan Conable
Fehr & Peers, Principal
Oakland, California
Key Presentation Take-Aways

- What is the Station Planning Toolbox?
- Why is it needed?
- Technical Input
- Toolbox Demonstration
About Caltrain

- Peninsula Corridor Joint Powers Board – governing body
- Bay Area commuter rail serves San Francisco, San Mateo, and Santa Clara counties
- Service dates to 1860s
- Average weekday ridership: ~65,000 riders
Caltrain Corridor

- Primarily two track system with some 4-track segments
- Varying right-of-way widths throughout corridor
- 42 At-Grade crossings, viaducts, and bridges
- 32 Passenger Stations
- 92 Weekday trains (Baby Bullet/Limited/Local Services)
- Diesel push/pull
- Corridor Electrification is under construction

Caltrain owns right-of-way from San Francisco to San Jose to Tamien Station (51 miles)

UPRR owns corridor south of Tamien Station; Caltrain has limited trackage rights
Station Management Toolbox

• **Purpose**: Provide a decision-making tool and technical analysis to help assess potential outcomes and trade-offs associated with access improvements and TOD at stations

• Funded by FTA planning grant and local match

• **Objectives**:
 - Establish performance goals and metrics related to Caltrain’s station-based assets and programs
 - Provide Caltrain with a methodology to quickly and transparently evaluate the performance of potential access investments and transit oriented developments at and near stations.
Station Management Toolbox

• Tasks include:
 - Phase 1 – Create the Toolbox Framework: Establish the range of decision and planning scenarios where the Toolbox is needed, and propose tools for quantitative analysis to aid in decision-making
 - Phase 2 – Build the Toolbox: Create the set of tools that will comprise the Toolbox and facilitate technical analysis
 - Phase 3 – Test the Toolbox: Use case studies of three Caltrain stations (South San Francisco, Belmont, and Redwood City) to test the Toolbox and develop case study plans

• Timing: Phase 1 and 2 – summer 2018
 Phase 3 TBD – aligning with Business Plan
TOD and Station Access at Caltrain Stations: What, Who, How, and Why

Relationship between the three projects
Caltrain Planning Tools

• Three interrelated planning and policy analyses to address station access and transit-oriented development (TOD)
• Key questions for each project:
 - **Rail Corridor Use Policy:** What can be developed on JPB property? Who can use JPB right-of-way and real estate?
 - **TOD Policy:** How should Caltrain develop available property?
 - **Station Management Toolbox:** Help answer “Why?” questions, to help assess outcomes and trade-offs of station access and TOD decisions
Toolbox Framework

Dynamic Inputs
- Fares
- Service Levels
- Vehicle Parking Charge
- Vehicle Parking Supply
- TOD
- Area Development
- Employer Shuttle Program
- Station Transit Accessibility
- Bicycle Network

Forecasting Engine
- Caltrain Ridership Model*
 * Based 2013 VTA Travel Demand Model
- Mode of Access Model
- Published Research

Primary Outputs
- Ridership
 - Station
 - System
- Mode of Access
 - Bicycle
 - Transit
 - Drop-off
 - Park-and-Ride
- Off-Peak Ridership
 - (weekday)
 - (weekend)

Secondary Outputs
- VMT
- Modal Efficiency
 - Bicycle
 - Transit
 - Drop-off
 - Park-and-Ride
- Net Passenger Revenue
- Net Development Revenue
- Geographic Equity
- Social Equity
Caltrain Ridership Model

• Regional Travel Demand Model
 - Good for system-wide ridership but misses station-level detail
 - Changes from model baseline estimated using elasticities for population, employment, fare, service level

• Direct Ridership Calibration
 - Adjusts station level ridership via linear regression models
 - Improves sensitivity to station area population, employment, accessibility

• TOD Ridership Calculation
 - Ridership from TOD development calculated separately based on trip rates from research
Caltrain Ridership Model
Mode of Access Model

• Models estimated from 2016 rider survey
 - Separate models for AM vs PM peaks and for access vs egress
 - Predictor variables include population, employment, accessibility by walk, bike, transit, shuttles, parking availability & cost, Caltrain frequency
 - Logit models transformed to linear regression via Berkson method

• Adjustments to initial access/egress models
 - TOD mode of access/egress
 - Ride-hailing trend
 - Changes in station parking
Ride Hailing Trends

• Effect on Caltrain Ridership
 - Tool can adjust total ridership based on trends in ride hailing
 - Best current research suggests commuter rail not influenced by ride hailing, so current version of tool does not include adjustment
 - Can be updated easily if future research supports it

• Effect on Mode Of Access
 - Tool adjusts mode of access based on trends in ride hailing
 - Ride hail access substitutes for other modes in accord with research and Caltrain-specific data
 - Size of ride hail effect can be selected by user
Station Management Toolbox – Graphic User Interface for Tool Inputs
Station Management Toolbox –
Graphic User Interface for Tool Outputs

RIDERSHIP OUTPUTS

Station Management Toolbox

Station Management Toolbox

REVENUE OUTPUTS

Revenews Outputs

EQUITY & ENVIRONMENTAL OUTPUTS

PARKING OUTPUTS

Station Management Toolbox
Demonstration
Caltrain Station Management Toolbox

Station Inputs

1. Station: Choose the station you'd like to modify. The chosen station will be marked yellow on the map. Stations you've already modified will be blue.

2. Caltrain Transit-Oriented Development Options: The drop-down menus for Site A, B, and C will be auto-populated with the chosen station’s available sites and development options. For each site, choose from the drop-down the appropriate development option. If you’d like to customize a development, choose “Custom” and manually input the land use and revenue information.

3. Repeat steps 4-7 for each station that has Station Area modifications for the Scenario.

4. Station Has Free Parking?: Check the box if free parking will be provided at the station in the Scenario Year.

5. Caltrain Parking Inputs: Input the parking either added or removed by the TODs entered in Step 4.

6. Other Station Area Developments: Add any additional development within the Station Area. The values should represent the new total land use.

7. For transit, employee shuttles, walking, and biking, input:

 - Access: Choose the level of accessibility for each transportation mode that matches the Scenario.

 - Capital Costs for Access Improvements: Input the expected capital costs (Net Present Value) Caltrain would allocate for the planned accessibility improvements for each mode.

 - Operating/Maintenance Costs for Access Improvements: Input the expected annual operating/maintenance costs for the access improvements.
Thank you!

The Caltrain Station Planning Toolbox

Elizabeth Scanlon
Caltrain, Director of Planning
scanlone@samtrans.com
San Carlos, California

Nathan Conable
Fehr & Peers, Principal
n.conable@fehrandpeers.com
Oakland, California