

Enabling Hybrid Buses to Act as Mobile Power Generators

The FTA Bus Exportable Power Supply (BEPS) Research and Demonstration Project

> APTA Annual Meeting October 10, 2017

Setting the Stage

Problem:

- Manmade and natural disasters disrupt the electrical grid.
- Traditional sources of backup power are often unreliable or take long to implement.

Idea:

Can hybrid electric buses be deployed to areas without power and export electricity from the bus to a facility?

Technology Overview

Imagine a hybrid bus broken into its basic building blocks

Technology Overview

Imagine a hybrid bus broken into its basic building blocks

Technology Overview

Can we park the bus and export its electricity to a medical center, gas station, or communications center to help with emergency response?

FTA Funded Research

FTA is sponsoring a project to investigate the Bus Exportable Power Supply (BEPS) idea.

Task 1: System Design and Demonstration

"Is it technical feasible?" "What are the design challenges?" "Show us that it's possible."

Task 2: Strategy Planning

"Is this useful?" "How would this be used?" "Who would pay for it?"

Task 1: System Design and Demonstration

• BEPS may be integrated into the bus or stored on a shelf

- Suitable for both parallel and series hybrids
 - Series hybrids dominate market today
- Power output up to 150 kW per bus

System Design

- Possible to parallel buses to power larger loads
- Need to work with OEM to understand control logic and thermal design

Typical Facility Loads

EMS Facilities:	15 - 25 kW
Fire Station:	15 - 25 kW
Police Stations:	15 - 25 kW
EOCs:	15 - 25 kW 📙
Comm. Centers:	35 - 75 kW
Radio Tower:	35 - 75 kW
Gov. Office:	100 - 200 kW
Schools:	200 - 300kW
Urgent Care:	200 - 300 kW
Hospitals:	800 - 2,000 kW

power output of BEPS equipped bus could be near 150kW

multiple buses must be configured together to power facilities with high loads

Simulating a BEPS System

Computer model of the BEPS system to better understand:

- how BEPS buses could be linked together to power high-load facilities
- control strategy to regulate frequency and voltage at nominal values
- fuel consumption
- thermal load as the bus idles and exports power

Demonstration Activity

- Q1 2018
- export electricity from a hybrid Ebus to facility on University of Texas campus

Task 2: Strategy Planning

Question:

Is exportable power useful? If so, how will it be used and who is responsible for it?

Approach:

Get input from stakeholders.

Expert Panel Meetings

Key Findings

Utilization/Deployment

- Site prep and skilled labor are needed to deploy generators
 - Traditional back-up generators are not "plug and play"
 - BEPS would require similar deployment support, unless facilities were selected and outfitted with equipment beforehand
- EM agencies could work with transit agencies to deploy BEPS
 - Establish the process before the emergency occurs
 - Transit and EM already collaborate during emergencies for evacuation support
- BEPS has strong potential at the local level
 - All emergencies initially are the responsibility of the local EM agency where back-up power resources may be limited
 - Can be used to "fill the gap" until state/federal support arrives

Key Findings

Procurement/Adoption

- Traditional trailer-mounted backup generators with similar power output to BEPS are \$30k \$60k each
 - Comparable to estimated BEPS equipment costs
- Transit agencies are more interested in BEPS if it is designed, built, and warranted by the bus OEM, compared to a third-party vendor
 - ROI is currently unknown, creating hesitation for OEMs to invest
- Federal incentives may motivate adoption
 - Spare ratio calculations

Key Findings

Constraints/Challenges

- Size of modern hybrid-electric buses
 - Positioning a bus close to the electrical connection at a facility may not always be possible
- Future popularity of hybrid-electric buses
 - BEPS technology is most effective with diesel and CNG fueled hybrid buses (high energy density and easy refueling)
 - BEPS could be packaged with hydrogen fuel cell hybrid-electrics
- Balancing transit agency resources immediately following an emergency
 - Evacuations vs. providing regular service vs. BEPS

Next Steps and Future Work

Gather more data from stakeholders! Conduct surveys and document findings.

- Emergency Management Agencies
- Transit Agencies

Build and Demonstrate a BEPS system with a hybrid-electric bus.

Publish findings in a comprehensive report.

Project Team – Points of Contact

Blake Whitson Technical Project Manager Center for Transportation and the Environment blake@cte.tv Ashley Wargo Managing Associate Hagerty Consulting ashley.wargo@hagertyconsulting.com Michael Lewis Sr. Research Engineer University of Texas at Austin – Center for Electromechanics mclewis@cem.utexas.edu

Discussion

Supplemental Slides

U.S. Agencies that own Hybrid-Electric Buses

