Mechanistic Design of Rail Transit Infrastructure Components

Project Summary, Select Findings, and Crosstie Prototyping

Riley Edwards, Marcus Dersch, Arthur Lima, and Minsoo Sung

2018 APTA Rail Conference
11 June 2018

U.S. Department of Transportation
Federal Transit Administration

RAILTEC
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Acknowledgements

► Research Sponsor

U.S. Department of Transportation
Federal Transit Administration

► Education Program Sponsor

NURail Center

► Industry Partners

Union Pacific
Building America™
Amtrak®
Metra®
The way to really fly.
APTA
American Public Transportation Association
MTA
New York City Transit
TriMet
Progress Rail
A Caterpillar Company
FTA-Funded Resilient Concrete Crossties and Fastening System Research Program

Objectives
► Develop resilient concrete crosstie design solutions for light, heavy, and commuter rail transit operators

Methodology
► Quantify concrete crosstie and fastening system demands when subjected to rail transit loading environments

Key Parameters to Quantify
► Loading Environment (lateral and vertical wheel/rail loads)
► Crosstie Bending Moments (rail seat and center)
► Rail Displacements (vertical and lateral)
FTA Project Approach

- Paper Study
- Industry Surveys
- Field Data Collection

Resilient Concrete Crosstie and Fastening System for Rail Transit

- Laboratory Testing
- Analytical Modelling
- Other Factors
FTA Project Transit Partner Agencies

(Two Sites; Curve & Tangent)
FTA Project Field Instrumentation Map

Metrics to quantify:

- Vertical and lateral input loads (crosstie and fastening system design, and load environment characterization)
- Crosstie bending strain (crosstie moment design)
- Rail displacements (fastening system design)
- Crosstie temperature gradient

- **Crosstie Bending Strain**
- **Vertical and Lateral Load (Wheel Loads)**
- **Rail Displacement (Base Vertical, Base Lateral)**
- **Rail Displacement (Base Vertical)**
- **Thermocouple**
- **Laser Trigger**
Installation of St. Louis MetroLink Field Site
Installation of St. Louis MetroLink Field Site
Vertical Rail Loads

St. Louis MetroLink (Tangent)

- **AW0** = Empty Weight
- **AW3** = Crush Load

Graph Details:
- **Vertical Load (kN)**
- **Percent Exceeding**
- **Heads:**
 - Far Rail
 - Near Rail
 - AW3 MetroLink
 - AW0 MetroLink

Legend:
- **AW0 = Empty Weight**
- **AW3 = Crush Load**
Vertical Rail Loads

St. Louis MetroLink (Tangent)

- AW0 = Empty Weight
- AW3 = Crush Load
Modal Comparison: Vertical Rail Loads

- Commuter Rail
- Heavy Rail
- Light Rail
- Commuter Locomotive

<0.05% wheel impacts exceed impact factor of 3
Load Data in AREMA Chapter 30 (2018)

Table 30-1-3. AW0 (Empty Load) and AW3 (Crush Load) Axle Loads for Light Rail, Heavy Rail and Commuter Rail Transit Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>AW0 Static Wheel Load (kips)</th>
<th></th>
<th>AW3 Static Wheel Load (kips)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Mean</td>
</tr>
<tr>
<td>Light Rail Vehicle</td>
<td>7.9</td>
<td>4.8</td>
<td>9.1</td>
<td>10.9</td>
</tr>
<tr>
<td>Heavy Rail Vehicle</td>
<td>9.4</td>
<td>6.8</td>
<td>11.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Commuter Railcar</td>
<td>10.6</td>
<td>10.6</td>
<td>20.4</td>
<td>20.0</td>
</tr>
<tr>
<td>Commuter Locomotive</td>
<td>32.7</td>
<td>25.0</td>
<td>37.2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- These values are intended to represent the North American loading regime and are not intended to be used for design.
FTA Project Field Instrumentation Map

Metrics to quantify:
- Vertical and lateral input loads (crosstie and fastening system design, and load environment characterization)
- **Crosstie bending strain** (crosstie moment design)
- Rail displacements (fastening system design)
- Crosstie temperature gradient

Instrumentation:
- Rail Displacement (Base Vertical)
- Rail Displacement (Base Vertical, Base Lateral)
- Thermocouple
- Laser Trigger

Legend:
- Red vertical bars: Vertical and Lateral Load (Wheel Loads)
- Green bars: Rail Displacement (Base Vertical, Base Lateral)
- Orange triangle: Laser Trigger
Center Negative (C-) Bending

Factor of safety is approximately:
- 6 for the maximum MetroLink C- bending moment measured
- 2 for the maximum NYCTA C- bending moment measured
Factor of safety is greater than:

- 3 for the maximum **MetroLink** RS+ bending moment measured
- 4 for the maximum **NYCTA** RS+ bending moment measured
Field Experimentation Takeaways

► Loading environment is significantly different at each transit mode
 • Design of any infrastructure component should consider this

► Wheel loads exceeded an impact factor (IF) of 3 rarely (<0.05%)
 • AREMA recommends designing concrete crossties with an IF of 3

► The reserve flexural capacity factors of safety ranged from 2 – 6

► This provides an opportunity to optimize not just the crosstie design but track structure
 • “Savings” from reductions in concrete, steel, & handling could be reallocated into resilient materials (under tie pads, ballast mats, etc.)

► Resilient materials could:
 • Reduce maintenance costs (e.g. increase time between tamping, etc.)
 • Reduce urban pollution (i.e. ground borne noise and vibration, etc.)
FTA Project Approach

Paper Study

Industry Surveys

Field Data Collection

Resilient Concrete Crosstie and Fastening System for Rail Transit

Laboratory Testing

Analytical Modelling

Other Factors
Concrete Crosstie Design Considerations

- Rail Seat Flexure
- Rail Seat Robustness
- Center Flexure
- Allowable Ballast Pressure
Initial Prototype Experimentation

Concurrent with Field Data Collection

Purpose:
► Identify how failure modes change varying key parameters
 • Determine a method to ensure a “safe” ultimate failure
► Develop, calibrate, and validate a finite element model

Various Trials
► Prestressing quantity and arrangement
 • Assist model calibration
► Synthetic Fibers in Concrete
 • Quantify failure mode/benefits of fibers
► Shear and flexural reinforcement
 • Quantify effect of stirrups on failure mode (shear/flexural)
Prototype Crosstie Manufacturing
Qualitative Prototype Results

- Standard Crosstie: Failure representative of typical crossties (i.e. shear)

- Fiber Prototype: Failure with more cracks, reduced crack width and non-shear

- Stirrup Prototype: Failure typical
Final Prototype Development

Design Optimization Framework

- RS+ and C- set from field data

Establish Target Safety Factors

- Calculate cracking moment through section analysis varying:
 - Section depth,
 - Number of wires
 - Eccentricity

Preliminary Analysis

- Run C- and RS+ Simulations
- Quantify cracking and ultimate moments

Finite Element Analysis
Preliminary Analysis: Work Flow

1. Develop safety factor (ϕ) surface for RS+ & C-
2. Combine Surfaces & Include Safety Factor planes
3. Plot intersections
 - Intersection will be depth and centroid

First Crack Moment Calculations:
- **ACI**
 - RS+: 178 kip-in.
 - C-: 56.3 kip-in.
- **UIUC FEM**
 - RS+: 197 kip-in
 - C-: 89.8 kip-in.
Theoretical Optimization Framework

![Graph showing the relationship between cost reduction and strength reduction for different wire counts (24, 22, 20, 18, and 16 wires). The x-axis represents strength reduction in percentage, and the y-axis represents cost reduction in dollars per tie.]
Path Forward: Installation and Monitoring at MetroLink & Project Dissemination

► Install Prototypes
 • Fall 2018

► Monitor Performance
 • Through Spring 2019

► Project Dissemination
 • Loading Environment
 • Bending Demands
 • Fastener Displacement
 • Design Framework
Acknowledgements

► Research Sponsor

U.S. Department of Transportation
Federal Transit Administration

► Education Program Sponsor

NURail Center

► Industry Partners

Union Pacific
Building America™
Amtrak®
Metra®
The way to really fly.
APTA
American Public Transportation Association

MTA
New York City Transit

TriMet
See where it takes you.

LB Foster
CXT Concrete Ties

Gutmann Technologies
by Nortrak

Progress Rail
A Caterpillar Company

Pandrol
Partners in excellence
Thank you for your attention!

J. Riley Edwards, P.E.
Senior Lecturer and Research Scientist
jedward2@Illinois.edu

University of Illinois at Urbana-Champaign (UIUC)
Rail Transportation and Engineering Center (RailTEC)

This project is funded by the Department of Transportation’s Federal Transit Administration and supported by the National University Rail Center (NURail), a US DOT-OST Tier 1 University Transportation Center