Baltimore Metro Retrofit – A Combined Train Control and Railcar Procurement

Vernon G. Hartsock, PMP Deputy Chief / Chief Engineer Maryland Transit Administration

> **Tedd L. Snyder, P.E.** Senior System Engineer CH2M Hill

Contents

- Metro Background
- Project Goals
- Project Scope
- Why communications based train control (CBTC)
- Constraints and Challenges
- Contractor Qualifications
- Project Schedule

Metro History and Background

- 15 miles of double track mainline
 - Section A, 7.5 miles, in service November 1983
 - Section B, 6 miles, in service July 1987
 - Section C, 1.5 miles, in service June 1995
- 14 stations (8 below ground)
- 8 interlockings
- 100 railcars
- 1 Consolidated Central Control
- 1 Back-up Central Control
- 1 Yard

Metro Operation

- 50,000 daily trips
- Operation 5 AM to 12 AM weekdays, 6 AM to 12 AM weekends
- Headways 8 min peak, 11 min off-peak
- Johns Hopkins to Owings Mills trip time 29 min
- 9 trains operating at peak
- 4-car train operation off-peak, 6-car trains peak
- 25 mph average speed
- 497 audio frequency (AF-400) track circuits with relay based train control system

Railcar and Train Control Project Goals

- Replace the near obsolete train control system with a CBTC system
- Replace the near obsolete railcars with new vehicles
- Improve reliability
- Reduce maintenance costs
- Reduce risk with a combined Railcar and train control system procurement
- Control risk by using only proven technologies
- Implement the new system with minimal disruptions to revenue service
- Realize the best value for the State of Maryland

Joint Railcar and ATC Procurement

- Eliminates the interface risk to the MTA
 - Between the Railcar and the train control system
- Eliminates the schedule coordination risk to the MTA
- Single contract focused on a performance based outcome
- Single point of contact for contract management

Railcar and Train Control Replacement Project Scope

- New railcars compatible only with CBTC
- CBTC system complete with Solid State Interlockings (SSI)
- The CBTC overlay enables both train types to operate prior to cutover
 - Existing trains with the AF-400 system
 - New trains with CBTC
- New automatic train supervision (ATS) with interface to Customer Information
- New Data Communications System with ring backbone
- Installation of temporary and permanent facilities for equipment

Railcar and Train Control Replacement Project Scope

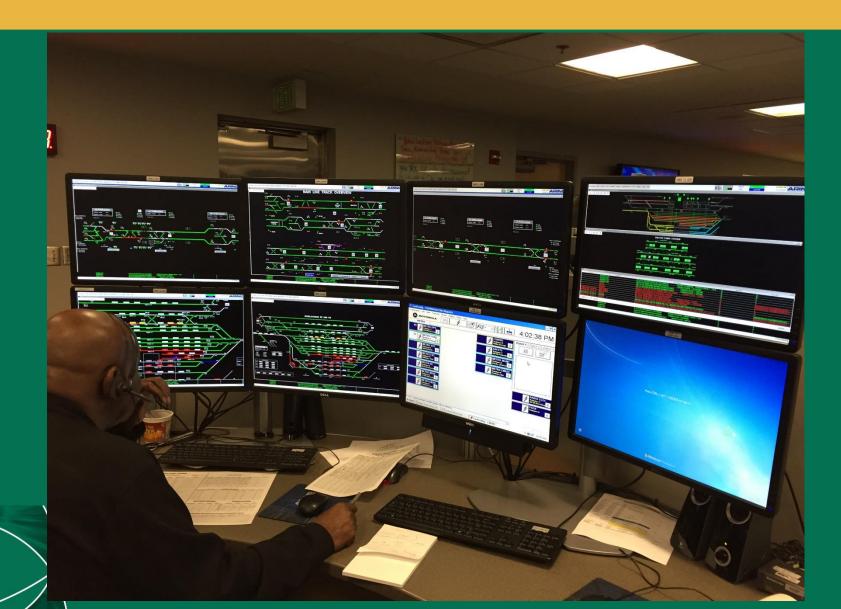
- Design, construction, and installation of conduit, duct, and raceways
- Replace all system cables in interlockings, including signals, switches, snow melters, and track circuits
- Cutover from existing train control to CBTC
- Removal of railcars and removal of obsolete train control equipment
- Commissioning and Safety & Security Certification
- Training (including maintenance and operations)
- Spares and special tools
- Site support and warranty

Metro Existing Relay Based Control

Railcar Project Summary

- Three alternatives for consideration
 - Married Pairs
 - Triplet w/ Gangway
 - Triplet w/ Free axle
- Maintain 75 ft length w/ 3 doors per side
- 6-car train length
- Stainless Steel with Crash Energy Management
- No backward compatibility

Why CBTC


- The ability to Overlay and operate simultaneously with the existing ATC
- Realize the life-cycle cost benefits of solid state microprocessor controls
- Reduced maintenance costs due to the elimination of track circuits
- Enable precise control of train movement in a work zone

Railcar and Train Control Replacement Constraints

- Maintain Metro system revenue service
- Minimize the number of service disruptions
- Access the system job site after evening peak service
- Integrate the new railcar into the Metro physical environment
- Integrate the ATC into the Metro physical and functional environment
- Provide the same ATS interface to the Central Controllers
- Limited space in the train control rooms
- Cabling installation using existing and new conduits or ducts

Integrated ATS Interface

Replacement Challenges

- The active system will limit unencumbered access
- The cut-over of the system will occur over many phases
- The occurrence of unforeseen/undocumented conditions
- Varying interfacing conditions; tunnel, elevated, ballasted
- Schedule

Contractor Qualifications

- System Integration experience with Brownfield within 10 years.
- Railcar experience with 7 years experience manufacturing in the US.
- Train Control System Supplier experience with 10 years
- Compliant with the standards cited in the RFP
- Implemented SSI similar to project scope
- Installer experienced with railway environment and project scope

Project Schedule

	2017	2018	2019	2020	2021	2022	2023	2024
NTP	\land							
ATC Design								
Railcar Design								
Completion of CDR								
Completion of PDR								
Completion of FDR			$ \Delta$					
ATC Installation								
Delivery of MP #1				$\boldsymbol{\bigtriangleup}$				
ATC Test Track Operation								
Railcar and ATC Accepted	9		$\boldsymbol{\wedge}$					
Deliver Accept MP #4 – #23 for Revenue Service								
Delivery and Acceptance	of All MPs	5						
Replace Track Circuit Equ	ipment							
Replace interlocking cabl	es							
Final Acceptance of ATC								\triangle
Warranty period for Railc								

Thank You

Baltimore Metro Retrofit – A Combined Train Control and Railcar Procurement

Capital Projects – Big Case Studies

2017 APTA Rail Conference

