How Major Cities around the World are Sustaining the Transit Services to the Growing Passengers

YOUSEF KIMIAGAR Vice President Rail Systems Canada Gannett Fleming Toronto, Ontario

CONTENT

- Population growth
- Transit in major cities
- Ridership demand growth
- Network capacity limitations
- Solutions
- Best practices

HONG KONG

GLOBAL RIDERSHIP

- 160 million passengers/day
- 50 billion/year
- 7.9% increase 2012-2015

UN PROJECTIONS - 2030

- World population over 8 billion
- Rural population to decline
- Urban population
 4.9 billion (~60%)
- Average growth 1.7% / year

http://www.un.org/esa/population/publications/WUP2005/2005wup.htm

URBAN POPULATION GROWTH

TABLE 2. TOTAL, URBAN AND RURAL POPULATION BY MAJOR AREA, SELECTED PERIODS, 1950-203	0
--	---

	Population (millions)					Average annual rate of change (percentage)		
Major area	1950	1975	2000	2005	2030	1950-2005	2005-2030	
Urban population								
Africa	33	105	294	347	742	4.29	3.04	
Asia	234	575	1 363	1 553	2 637	3.44	2.12	
Europe	277	443	522	526	546	1.17	0.16	
Latin America and the Caribbean	70	197	394	434	609	3.31	1.35	
Northern America	110	180	249	267	347	1.62	1.05	
Oceania	8	15	22	23	31	1.96	1.18	

•	Europe	0.16%
•	North America	1.05%
•	Asia	2.12%

• Is the ridership growth proportional?

RIDERSHIP GROWTH

Ridership Growth 2014 - 2012

http://www.uitp.org/sites/default/files/cck-focus-papers-files/UITP-Statistic%20Brief-Metro-A4-WEB_0.pdf

TOP RIDERSHIP CITIES

AVERAGE NETWORK DENSITY

16

AVERAGE RIDERSHIP/STATION

PERFORMANCE CRITERIA

- Safe
- Reliable
- Sustainable
- Clean
- Accessible
- Comfortable

SOLUTIONS

Long term (\$\$\$\$\$)

- New infrastructure
- New lines

Short term (\$\$)

- Using the existing infrastructure efficiently
- Maximizing the capacity

) the (1) CBTC in New York development continues as \$225.5 mmon

NDERGROUND

ly be nin the

Issengers

12 million F domand was

inicised

toria Line Maintein i Only Be Loexpansion the The LAI's metro expansion The LAI's metro expansion

City international the part of the second capital complete a second capital capita

Freenon with a break party markers of the second of the second and a marker of the second and a marker of the second of the seco

Danscos teature in our conduportities weaks teat our sortes

arget Posted on Jan 16, 2017 Further progress on the development of the Communications Based Train Control (CBTC) Sless system on the Queens Boulevard Line connecting Queens and Manhattan in New York this week alreat with the announcement of who has been awarded a \$223.3 million contract. The radio-based CBTC technology provides real-time 3 data on vehicle -ocition and speed conditions, a uncrease the

llowing syste mber of ve er frequ acco

KyTrain e

last year _

Ipff.

Plans to modernise four London Underground lines 'double' in cost

3 August 2015 London

< Share

The modernisation plans include new tracks, longer platforms, a new signalling system and rebuilt depots

The cost of modernising signalling on four Tube lines has more than doubled

HONG KONG MTR NETWORK

MTR SEVEN LINE MODERNIZATION

- 1. Tsuen Wan red line
- 2. Island blue line
- 3. Kwun Tong green line
- 4. Tseung Kwan O purple line
- 5. Disneyland Resort pink line
- 6. Tung Chung orange line
- 7. Airport Express green line

MTR's PLAN

- 2015: Single contract \$350m
- Largest resignalling award at the time
- CBTC technology solution
- Interoperable

ΤΟΚΥΟ

- Over 3b ridership
- On time, clean
- 32 trains/hour
- 2 new lines
 - Tokyo Station to the Rinkai
 - Central Tokyo to
 Shinagawa

https://japantoday.com/category/national/tokyo-to-get-two-new-subway-lines-amid-redevelopment-boom http://www.metro-magazine.com/rail/article/721843/how-the-tokyo-metro-handles-rush-hour-to-operate-on-time

PARIS MODERNIZATION

- Since 1900 over 5million/day
- UTO: Line 1, 14
- Headway 105 => 85 sec (over 40 trains)
- Capacity up by 10%Power saving 15%

https://www.siemens.com/press/de/pressebilder/?press=/de/pressebilder/2011/mobility-logistics/icmol201111001-04.htm

PARIS AUTOMATION

Line 14 (Meteor) UTO / 30%	1998
RATP Metro Line 1 UTO / 30%	2011
RATP Metro Line 3	2012
RATP Metro Line 13	2013
RATP Metro Line 5	2013
RATP Metro Line 9	2018
RATP Metro Line 10	2020
RATP Metro Line 12	2020
RATP Metro Line 4	2022

http://media.firabcn.es/content/S088011/Presentacions/1_salaB/Estivals_Nicolas.pdf

NEW YORK

NEW YORK SUBWAY

- Built over 100 yeas ago end of Life (W4th St)
- Interoperable CBTC (I2S)
 - Canarsie done
 - Flushing construction
 - QBL construction
 - 8th Ave procurement
 - Culver line procurement
- Backlog > 50 years

Key to Improving Subway Service in New York? Modern Signals

New York's subway is struggling with old infrastructure and overcrowding. The M.T.A.'s failure to modernize its signal system is a crucial example.

By EMMA G. FITZSIMMONS MAY 1, 2017

MTA's FUTURE

• 2016: Governor Cuomo - \$27 billion

 Largest investment in the history

 Leading MTA into 21st century

ROLLING STOK & SIGNALLING

- 1025 New Subway Cars
 - Wider doors
 - Open gangway
 - Open space / Flip seats
- CBTC Implementation
 - Headway 90 sec
 - Dwell time 30 sec

https://www.engadget.com/2016/07/19/nyc-subway-cars-have-wifi-and-usb-ports-built-in/

MODERNIZATION UNDERWAY

31 Station

- Modernization
- Safety
- Reliability
- Efficiency
- Consistency
- Wayfinding
- Wi-Fi & USB ports

LONDON MODERNIZATION

TfL said it needs to replace old signalling equipment

http://www.bbc.com/news/uk-england-london-33756746

LONDON 2050

- Demand increasing by 60%
- TfL's solution:
 - Heavily automated tube and sub-surface system
 - New trains: up-to-11% capacity gain with continuous internal space
 - Unattended Train Operation (UTO)

VICTORIA LINE

- Peak Tubes
- May 22, 2017
- 36 Trains/hour
- Headway 100 sec
- Dwell 40 sec

The Victoria Line Will Soon Only Be Limited By The LAWS OF PHYSICS

By James O Malley on 25 Apr 2017 at 7:30AM

http://www.gizmodo.co.uk/2017/04/the-victoria-line-will-soon-only-be-limited-by-the-laws-of-physics/

THE NEW TUBE FOR LONDON

- Faster, more frequent, more reliable
 - Piccadilly line
 - Bakerloo
 - Central
 - Waterloo
 - City lines
- Wider doors
- Platform edge doors
- Open gangway

4 LINE MODERNIZATION

- 40% of the LU Network
- Oldest built in 1863 (314 km track)
- Largest resignalling contract to date
- CBTC solution: 32 train/hr
- By 2022: capacity up 33%
 - District
 - Circle
 - Metropolitan
 - Hammersmith & City

BEST PRACTICES

AUTOMATION

Year 2014

- Asia: 57 lines
- Europe: 26 lines
- North America: 10 Lines
- South America: 4 lines

By 2025: over 2000 km

http://www.uitp.org/sites/default/files/cck-focus-papers-files/UITP-Statistic%20Brief-Metro-A4-WEB_0.pdf

CBTC BENEFITS

- Increased safety/reliability
- Increased capacity (40 train/hr)
- Operation flexibility
- More accurate train arrival time
- Reduced energy consumption
- Less crew (one or none)
- Reduced maintenance cost

OPEN GANGWAY

- Increased capacity >> 10%
- Redistribute passengers
- Enhanced security

WALK BETWEEN THE CARS

Courtesy of The Transport Politic - Yonah Freemark

ENTRY/EGRESS CAPACITY

		Doors	Max	Max	Doors			Car	Max train	Door width/train		
Name	Model	per car	cars	doors	per 100'	Units	Door width	length	length	length		
νιμάτα	1000-7000	3	8	24	4.00	Feet/Inches	4.17 50	75	600	16.67%		
	series	5	0	24	4.00	Meters	1.27	22.80	182.40	10.07 %		
DATD		3	6	18	an a	Feet/Inches	5.43 65	49.50	296.97	32 0.0%		
NAIF	IVIP-05	J	0	10	0.00	Meters	1.65	15.05	90.28	32.307		
BART	A, B, C cars	A R C coro	2	10	20	2.00	Feet/Inches	4.50 54	70	700	10.000/	
		2	10	20	2.00	Meters	1.37	21.28	212.8	12.00%		
RADT	new D, E	2	10	20	4 20	Feet/Inches	4.50 54	70	700	10 20%		
DARI	cars	5	10		4.23	Meters	1.37	21.28	212.8	15.2570		
NYC Subway	D160P	4	10	40	6.67	Feet/Inches	4.17 50	60	600	27 700/		
B Division	RIOUD	4	10	40	0.07	Meters	1.27	18.24	182.4	21.107		
NYC Subway	D142/D199	2	11	22	5.94	Feet/Inches	4.50 54	51.33	564.63	26.20%		
A Division	K142/K100	5			0.04	Meters	1.37	15.60	171.65	20.307		
Terente	Deekst	Peeket	Dookot	4	6	24	E 22	Feet/Inches	4.93 59	75.00	450	26.229/
Toronto	NUCKEL	4	0	24	5.55	Meters	1.50	22.86	137.16	20.327		

ENTRY/EGRESS DESIGN

https://www.mtlblog.com/news/inside-the-stms-all-new-azur-metro-cars-20-photos

BEST PRACTICES

Performing feasibility studies **Developing ConOps/ConMaint** Implementing systems engineering Learning from lessons Eliminating/minimizing constraints Automating (CBTC) Designing configurable train consist Increasing train capacity - gangway/design Minimizing dwell time Increasing entry/egress circulation

THANK YOU

YOUSEF KIMIAGAR Vice President Rail Systems Canada Gannett Fleming ykimiagar@gfnet.com +1 (416) 565-2562