Testing Automated Collision Avoidance Systems for Transit Buses

Jerome M. Lutin, PhD, PE, F.ITE Senior Director of Statewide & Regional Planning NJ TRANSIT (retired)

2017 Fare Collection/Revenue Management & TranslTech Conferences

Key Presentation Take-Aways

- Bus and paratransit incur about 15,000 injuries and 100 fatalities per year
- Bus and paratransit casualty and liability expenses total about \$500 million a year
- Much of this is due to collisions
- Technology is available to reduce collisions
- Transit needs to aggressively pursue R&D for collision avoidance systems

Innovations Deserving Exploratory Analysis (IDEA) Project Transit -82

Funding from

- Transportation Research Board
- Washington State Transit Insurance Pool
- Munich Re America
- Alliant Insurance Services, Inc.
- Government Entities Mutual, Inc.

US Bus and Paratransit Injuries

Bus Paratransit and Vanpool Casualty and Liability Expenses

Collisions, Fatalities, Injuries, Casualty and Liability Expenses for Bus and Rail Modes

	Reporting Period 2002-2015						
Mode	Collisions	Fatalities	Injuries	Total Casualty and Liability Expenses by Mode			
Total Bus, Demand Responsive and Van Pool	90,056	1,442	218,139	\$6.96 Billion			
Total Rail	6,526	1,453	97,243	\$4.38 Billion			

National Transportation Safety Board (NTSB)

2015 - Special Investigation Report – The Use of Forward Collision Avoidance Systems to Prevent and Mitigate Rear End Crashes

- currently available forward collision avoidance technologies for passenger and commercial vehicles ... could reduce rear-end crash fatalities."
- Forward collisions reduced 71% for trucks with collision avoidance systems, (CAS) autonomous emergency braking, (AEB) and electronic stability control (ESC)

NTSB recommendations:

- Manufacturers install forward collision avoidance systems on all newly manufactured passenger and commercial motor vehicles
- NHTSA expand New Car Assessment Program to include graded performance rating of forward collision avoidance systems
- NHTSA expand or develop protocols for assessment

Transit May Be Left Behind

- Transit buses are a niche market little incentive for OEM's to invest in R&D
- Agencies required to retain buses for 12 + years
- Years before transit benefits from CAS and AEB on new buses
- Need to retrofit existing buses with CAS and AEB
- Need standards for CAS and AEB for retrofits and new buses

August 19, 2016 Newark, NJ

Driver killed, 18 injured after 2 NJ Transit buses crash in Newark

Newark bus crash victims to sue for at least \$115M for 'catastrophic' injuries

Innovations Deserving Exploratory Analysis (IDEA)

TRB grant and funding from insurance companies

- Equipped 35 transit buses at seven member agencies and three buses at King County Metro with CAS
- Comprehensive examination of total costs for most severe and costly types of collisions
- Evaluate potential for CAS to reduce the frequency and severity of collisions, and reduce casualty and liability expenses
- Does not include autonomous braking in this phase

Participating Transit Agencies

- Ben Franklin Transit, Richland, WA
- Community Transit, Everett, WA
- C-Tran, Vancouver, WA
- InterCity Transit, Olympia, WA
- King County Metro, Seattle, WA
- Kitsap Transit, Bremerton, WA
- Pierce Transit, Tacoma, WA
- Spokane Transit, Spokane, WA

Project Team

Washington State Transit Insurance Pool	Allan F. Hatten Jerry Spears	Executive Director Principal Investigator		
Geneva Financial Services. Inc.	Steven M. Clancy	Principal		
	Janet Gates	Project Assistant		
Rosco Vision Systems, Inc.	Benjamin Englander Mike Cacic Gus Franjul	Vice President, Engineering Program Manager for Safety Systems Field Service Engineer		
University of Washington	Professor Yinhai Wang, PhD Ruimin Ke	Co-Principal Investigator Graduate Research Assistant		

Rosco/Mobileye Shield+ system collision avoidance warning system (CAWS) specifically designed for transit buses

Provides alerts and warnings for events that could lead to a collision:

- changing lanes without activating a turn signal
- exceeding posted speed limit
- closing with vehicle in front of the bus
- closing with pedestrian or bicyclist in front of, or alongside the bus

Alerts and warnings

- visual indicators on windshield and front pillars
- Audible warnings issued when collisions are imminent

Shield+ system being installed on Gillig bus at C-TRAN in Vancouver, WA

- 6 different types of transit buses produced by three mfrs.
- high floor, low floor, Diesel, hybrid, and electric trolley buses
- 2-person team complete one bus installation in 8 hour period

Center indicator illuminates as pedestrian crosses in front of moving bus during testing

System Configuration

System Configuration - Alerts and Warning Displays

"MOBILEYE SHIELD+" OPERATOR REFERENCE GUIDE

T: 718.526.2601

APTA

www.rescovision.com

System Configuration - Alerts and Warning Displays

CENTER DISPLAY & EYEWATCH

OFF

Center Display Contains the Pedestrian Display and EyeWatch. The EyeWatch readouts and explanations can be found below on this document.

- Yellow illumination with no sound
- Indicates a pedestrian or cyclist is in front of the moving bus or coming towards the moving bus.
- Operator should exercise additional caution until verifying that the danger of collision has passed.

ALERT

- Red flashing with beeping sound
- Indicates a pedestrian or cyclist is in front of the moving bus or coming towards the moving bus and collision is imminent.
- Operator should take action to carefully stop bus to avoid collision.

Telematics - Monitoring System Performance

- The CAS does not record video
- Additional cameras record video of events
- Additional technology is used to generate data that can be used to evaluate the systems' effectiveness
- Telematics unit captures and transmits data

Monitoring System Performance with Telematics and Video

Field Testing the CAS-Mapping Telematics Data

Field Testing the CAS

- Checking System
 Performance in
 Revenue Service –
- comparing real time observations with telematics data

Field Testing the CAS- Logging Telematics Data

8	Number of selected vehicles : 1 Information exists for 1 of 1 vehicles selected									
9	Time Period: : 28/03/2016 21:20:00 - 28/03/2016 22:20:59									
10	Total Records 44									
11	Report Name : -	Vehicle name	Heading	Distance In Miles	Driver name	Address	Speed	Status Name	Rule name	POI Original
	28/03/2016	KCM #4346	NE	3.29		1333-1367 Madison St,	14	ME -	ME4 -	
	21:57:25					Seattle, WA 98104, USA		Pedestrian	Pedestrian	
								In Range	In Range	
15								Warning	Warnin	
	28/03/2016	KCM #4346	NE	3.29		1368-1398 Madison St,	14	PDZ-R	ME4 - PDZ -	
16	21:57:29					Seattle, WA 98104, USA			Right	
	28/03/2016	KCM #4346	NE	3.73		1349-1397 E Madison St,	14	ME -	ME4 -	
	22:00:00					Seattle, WA 98122, USA		Pedestrian	Pedestrian	
								In Range	In Range	
17								Warning	Warnin	
	28/03/2016	KCM #4346	NE	3.73		1349-1397 E Madison St,	12	ME-PCW		
18	22:00:07					Seattle, WA 98122, USA				
	28/03/2016	KCM #4346	NE	3.73		1350-1398 E Madison St	11	ME -	MF4 -	

Data Collection April 1, 2016 – June 30, 2016

- 352,129 operating miles
- 23,798 operating hours
- 250 driver surveys returned
- 178 comments received
- 16,600 hours of video
- 10,000 events logged
- 19 TB of video storage
- No pedestrian or forward collisions

Comparing Frequency of Alerts and Warnings with Spokane Transit Control Group

Warning Type	Warnings per 1000 miles				
	Control Group (2 buses 17K mi)	Active Fleet (33 buses, 344K mi)	Active Fleet Reduction		
Speed Limit	16.74	15.39	-8%		
Headway (HW)	185.84	50.31	-73%		
Forward Collision <19 mph (UFCW)	317.74	96.04	-70%		
Forward Collision >19 mph (FCW)	10.99	6.27	-43%		
Pedestrian Collision (PCW)	27.67	18.00	-35%		

Video Analyses by UW Testing for False Positives and False Negatives

(a)

Insurance Pool Data - Major Portion of Injuries, Fatalities, and Claims are Collision Related

Examination of 282 closed claims for Washington State Transit Insurance Pool spanning 2006-2015

- 100% of fatalities (6 total) were collision-related (vehicle, pedestrian, and bicyclist)
- 88% of injuries (335 total) resulted from collisions or sudden stops
- 94% of claims (\$24.9 million total) resulted from collisions or sudden stops

MANY OF THESE COULD HAVE BEEN PREVENTED WITH CAS AND AEB

Framework for Estimating Cost Savings

Research Implications – The Business Case for CAS/AEB

Bus Type	2015 Casualty & Liability Expense per Bus
Commuter Bus	\$6,229
Motor Bus	\$7,986
Rapid Bus (BRT)	\$4,116
Trolley Bus	\$11,796

What Next - Autonomous Braking

• The curved line shows velocity of the bus when braking

Time

Pierce Transit's Continuing Research in Collision Avoidance

- Pierce Transit receives \$1.66 million grant from Federal Transit Administration (FTA) to install bus safety technology
- •176 buses will be equipped with Shield+ CAWS
- Buses will be operated and data recorded for a full year
- Some buses will also be equipped with Automated Emergency Deceleration (AED) for testing

The Need for Standards and Specifications

Transit buses require different CAS-AEB technology than cars and trucks

- •Blind spot locations are different
- •Operator training and workload
- Proximity of pedestrians and waiting passengers
- •Standing passengers could be injured from sudden stops
- •Buses in service 12 -18+ years ability to retrofit is key
- •Can not take buses out of service for long periods standards help design systems for quicker retrofits and maintenance
- Most buses purchased through competitive bidding requiring detailed specifications for CAS-AEB

Thank You

Jerome.lutin@verizon.net

