Testing Automated Collision Avoidance Systems for Transit Buses

Jerome M. Lutin, PhD, PE, F.ITE
Senior Director of Statewide & Regional Planning
NJ TRANSIT (retired)
• Bus and paratransit incur about 15,000 injuries and 100 fatalities per year
• Bus and paratransit casualty and liability expenses total about $500 million a year
• Much of this is due to collisions
• Technology is available to reduce collisions
• Transit needs to aggressively pursue R&D for collision avoidance systems
Funding from

- Transportation Research Board
- Washington State Transit Insurance Pool
- Munich Re America
- Alliant Insurance Services, Inc.
- Government Entities Mutual, Inc.
US Bus and Paratransit Injuries

Annual US Bus and Paratransit Injuries
2003-2015

Source: Federal Transit Administration
Bus Paratransit and Vanpool Casualty and Liability Expenses

Annual US Bus, Paratransit and Vanpool Casualty & Liability Expense
Source: Federal Transit Administration National Transit Database

Casualty & Liability Expense
Linear (Casualty & Liability Expense)
Collisions, Fatalities, Injuries, Casualty and Liability Expenses for Bus and Rail Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Reporting Period 2002-2015</th>
<th></th>
<th></th>
<th>Total Casualty and Liability Expenses by Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collisions</td>
<td>Fatalities</td>
<td>Injuries</td>
<td></td>
</tr>
<tr>
<td>Total Bus, Demand Responsive and Van Pool</td>
<td>90,056</td>
<td>1,442</td>
<td>218,139</td>
<td>$6.96 Billion</td>
</tr>
<tr>
<td>Total Rail</td>
<td>6,526</td>
<td>1,453</td>
<td>97,243</td>
<td>$4.38 Billion</td>
</tr>
</tbody>
</table>
Currently available forward collision avoidance technologies for passenger and commercial vehicles ... could reduce rear-end crash fatalities.”

Forward collisions reduced 71% for trucks with collision avoidance systems, (CAS) autonomous emergency braking, (AEB) and electronic stability control (ESC)
NTSB recommendations:

- Manufacturers - install forward collision avoidance systems on all newly manufactured passenger and commercial motor vehicles
- NHTSA - expand New Car Assessment Program to include graded performance rating of forward collision avoidance systems
- NHTSA - expand or develop protocols for assessment
Transit May Be Left Behind

- Transit buses are a niche market – little incentive for OEM’s to invest in R&D
- Agencies required to retain buses for 12 + years
- Years before transit benefits from CAS and AEB on new buses
- Need to retrofit existing buses with CAS and AEB
- Need standards for CAS and AEB for retrofits and new buses
Driver killed, 18 injured after 2 NJ Transit buses crash in Newark

Newark bus crash victims to sue for at least $115M for 'catastrophic' injuries
Innovations Deserving Exploratory Analysis (IDEA)

TRB grant and funding from insurance companies

- Equipped 35 transit buses at seven member agencies and three buses at King County Metro with CAS
- Comprehensive examination of total costs for most severe and costly types of collisions
- Evaluate potential for CAS to reduce the frequency and severity of collisions, and reduce casualty and liability expenses
- Does not include autonomous braking in this phase
Participating Transit Agencies

- Ben Franklin Transit, Richland, WA
- Community Transit, Everett, WA
- C-Tran, Vancouver, WA
- InterCity Transit, Olympia, WA
- King County Metro, Seattle, WA
- Kitsap Transit, Bremerton, WA
- Pierce Transit, Tacoma, WA
- Spokane Transit, Spokane, WA
Project Team

| Washington State Transit Insurance Pool | Allan F. Hatten | Executive Director
	Jerry Spears	Principal Investigator
Geneva Financial Services, Inc.	Steven M. Clancy	Principal
	Janet Gates	Project Assistant
Rosco Vision Systems, Inc.	Benjamin Englander	Vice President, Engineering
	Mike Cacic	Program Manager for Safety Systems
	Gus Franjul	Field Service Engineer
University of Washington	Professor Yinhai Wang, PhD	Co-Principal Investigator
	Ruimin Ke	Graduate Research Assistant
Provides alerts and warnings for events that could lead to a collision:

- changing lanes without activating a turn signal
- exceeding posted speed limit
- closing with vehicle in front of the bus
- closing with pedestrian or bicyclist in front of, or alongside the bus

Alerts and warnings

- visual indicators on windshield and front pillars
- Audible warnings issued when collisions are imminent
Shield+ system being installed on Gillig bus at C-TRAN in Vancouver, WA

- 6 different types of transit buses produced by three mfrs.
- high floor, low floor, Diesel, hybrid, and electric trolley buses
- 2-person team complete one bus installation in 8 hour period
Center indicator illuminates as pedestrian crosses in front of moving bus during testing
System Configuration
System Configuration - Alerts and Warning Displays

"MOBILEYE SHIELD+" OPERATOR REFERENCE GUIDE

LEFT SIDE DISPLAY
- Left Side Pedestrian Display
 - For detecting pedestrians and cyclists who are near left front corner of bus or left side of bus.
 - Yellow illumination with no sound
 - Warns the operator a pedestrian or cyclist has been detected near the left front or left side of bus.
 - Operator should exercise additional caution and verify that the danger of collision has passed.

CENTER DISPLAY & EYEWATCH
- Center Display
 - Contains Pedestrian Display and EYEWATCH.
 - The EYEWATCH readouts and explanations can be found below on this document.

RIGHT SIDE DISPLAY
- Right Side Pedestrian Display
 - For detecting pedestrians and cyclists who are near right side of bus.

EYEWATCH READOUTS
- Solid green dot with beeping sound on each side:
 - System is operational with beeps at 5 second interval.
 - System is operational.

- Lane Departure Warning (LDW):
 - Occurs when crossing the lane markings without using turn signal.

- Adaptive Cruise Control:
 - A series of sharp warning beeps of short duration.

 - The path will be on the Eyewatch side corresponding to the lane crossed over.
 - For photos this feature is not active.

- Speed Limit Indicator (SLI):
 - Appears when the bus is traveling at or below posted speed limit.

 - Two vertical white hash marks on each side of the Eyewatch will appear with a white number indicating miles per hour in the last posted speed limit.

 - Has a chime sound.

- Highway Monitoring (HMP):
 - Appears on green car.

 - Indicates the distance between bus and vehicle in front of bus.

 - The S indicates the seconds until a collision would occur if the front vehicle were to come to a stop.

 - Operator is advised to reduce speed to increase distance to a safe level.

 - Has a chime sound.
System Configuration - Alerts and Warning Displays

CENTER DISPLAY & EYEWATCH

- **OFF**
 - Center Display
 - Contains the Pedestrian Display and EyeWatch.
 - The EyeWatch readouts and explanations can be found below on this document.

- **DETECTION**
 - Yellow illumination with no sound
 - Indicates a pedestrian or cyclist is in front of the moving bus or coming towards the moving bus.
 - Operator should exercise additional caution until verifying that the danger of collision has passed.

- **ALERT**
 - Red flashing with beeping sound
 - Indicates a pedestrian or cyclist is in front of the moving bus or coming towards the moving bus and collision is imminent.
 - Operator should take action to carefully stop bus to avoid collision.
Telematics - Monitoring System Performance

- The CAS does not record video
- Additional cameras record video of events
- Additional technology is used to generate data that can be used to evaluate the systems’ effectiveness
- Telematics unit captures and transmits data
Monitoring System Performance with Telematics and Video
Field Testing the CAS-Mapping Telematics Data
Field Testing the CAS

- Checking System Performance in Revenue Service –
- comparing real time observations with telematics data
Field Testing the CAS- Logging Telematics Data

<table>
<thead>
<tr>
<th>Report Name</th>
<th>Vehicle name</th>
<th>Heading</th>
<th>Distance In Miles</th>
<th>Driver name</th>
<th>Address</th>
<th>Speed</th>
<th>Status Name</th>
<th>Rule name</th>
<th>POI Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2016</td>
<td>KCM #4346</td>
<td>NE</td>
<td>3.29</td>
<td></td>
<td>1333-1367 Madison St, Seattle, WA 98104, USA</td>
<td>14</td>
<td>ME - Pedestrian In Range</td>
<td>ME4 - Pedestrian In Range</td>
<td></td>
</tr>
<tr>
<td>28/03/2016</td>
<td>KCM #4346</td>
<td>NE</td>
<td>3.29</td>
<td></td>
<td>1368-1398 Madison St, Seattle, WA 98104, USA</td>
<td>14</td>
<td>PDZ-R</td>
<td>ME4 - PDZ - Right</td>
<td></td>
</tr>
<tr>
<td>28/03/2016</td>
<td>KCM #4346</td>
<td>NE</td>
<td>3.73</td>
<td></td>
<td>1349-1397 E Madison St, Seattle, WA 98122, USA</td>
<td>14</td>
<td>ME - Pedestrian In Range</td>
<td>ME4 - Pedestrian In Range</td>
<td></td>
</tr>
<tr>
<td>28/03/2016</td>
<td>KCM #4346</td>
<td>NE</td>
<td>3.73</td>
<td></td>
<td>1349-1397 E Madison St, Seattle, WA 98122, USA</td>
<td>12</td>
<td>ME - PCW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28/03/2016</td>
<td>KCM #4346</td>
<td>NE</td>
<td>3.73</td>
<td></td>
<td>1350-1398 E Madison St</td>
<td>11</td>
<td>ME -</td>
<td>ME4 -</td>
<td></td>
</tr>
</tbody>
</table>
Data Collection
April 1, 2016 – June 30, 2016

- 352,129 operating miles
- 23,798 operating hours
- 250 driver surveys returned
- 178 comments received
- 16,600 hours of video
- 10,000 events logged
- 19 TB of video storage
- No pedestrian or forward collisions
Comparing Frequency of Alerts and Warnings with Spokane Transit Control Group

<table>
<thead>
<tr>
<th>Warning Type</th>
<th>Warnings per 1000 miles</th>
<th>Control Group (2 buses 17K mi)</th>
<th>Active Fleet (33 buses, 344K mi)</th>
<th>Active Fleet Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Limit</td>
<td>16.74</td>
<td>15.39</td>
<td>-8%</td>
<td></td>
</tr>
<tr>
<td>Headway (HW)</td>
<td>185.84</td>
<td>50.31</td>
<td>-73%</td>
<td></td>
</tr>
<tr>
<td>Forward Collision <19 mph (UFCW)</td>
<td>317.74</td>
<td>96.04</td>
<td>-70%</td>
<td></td>
</tr>
<tr>
<td>Forward Collision >19 mph (FCW)</td>
<td>10.99</td>
<td>6.27</td>
<td>-43%</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Collision (PCW)</td>
<td>27.67</td>
<td>18.00</td>
<td>-35%</td>
<td></td>
</tr>
</tbody>
</table>
Video Analyses by UW
Testing for False Positives and False Negatives
Insurance Pool Data - Major Portion of Injuries, Fatalities, and Claims are Collision Related

Examination of 282 closed claims for Washington State Transit Insurance Pool spanning 2006-2015

- 100% of fatalities (6 total) were collision-related (vehicle, pedestrian, and bicyclist)
- 88% of injuries (335 total) resulted from collisions or sudden stops
- 94% of claims ($24.9 million total) resulted from collisions or sudden stops

MANY OF THESE COULD HAVE BEEN PREVENTED WITH CAS AND AEB
Framework for Estimating Cost Savings

Event Data (March-April)
- Event Location
- Event Time
- Event Type

Historical Collision Data
- Collision Location
- Collision Time
- Collision Type
- Collision Payment

Classification

Learn of the conversion rates of “event to collision”

Event Data (May-June)
- Event Location
- Event Time
- Event Type

Before-after Analysis

Cost-Savings Estimation

Collision payment of each category
Research Implications – The Business Case for CAS/AEB

<table>
<thead>
<tr>
<th>Bus Type</th>
<th>2015 Casualty & Liability Expense per Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter Bus</td>
<td>$6,229</td>
</tr>
<tr>
<td>Motor Bus</td>
<td>$7,986</td>
</tr>
<tr>
<td>Rapid Bus (BRT)</td>
<td>$4,116</td>
</tr>
<tr>
<td>Trolley Bus</td>
<td>$11,796</td>
</tr>
</tbody>
</table>
What Next - Autonomous Braking

- The curved line shows velocity of the bus when braking
Pierce Transit’s Continuing Research in Collision Avoidance

• Pierce Transit receives $1.66 million grant from Federal Transit Administration (FTA) to install bus safety technology
• 176 buses will be equipped with Shield+ CAWS
• Buses will be operated and data recorded for a full year
• Some buses will also be equipped with Automated Emergency Deceleration (AED) for testing
The Need for Standards and Specifications

Transit buses require different CAS-AEB technology than cars and trucks

- Blind spot locations are different
- Operator training and workload
- Proximity of pedestrians and waiting passengers
- Standing passengers could be injured from sudden stops
- Buses in service 12-18+ years - ability to retrofit is key
- Can not take buses out of service for long periods – standards help design systems for quicker retrofits and maintenance
- Most buses purchased through competitive bidding requiring detailed specifications for CAS-AEB
Thank You

Jerome.lutin@verizon.net