Local Bus Performance and Declining Ridership – Reasons and Responses

Holly Chase, AICP Senior Transit Planner Sam Schwartz Engineering New York, New York

Sam Schwartz

Transportation Consultants

2018 Sustainability & Multimodal Planning Workshop

Introduction

- Background
- Study Methodology
- Findings

Bus ridership in NYC has declined, in part dueto a 'fractured manager
findsDecline in NYC Bus Ridership Concentrated in
Manhattan and Brooklyn

By David Meyer Feb 21, 2017

December 23, 2017 | 4:01pm | Updated

Recommendations include the MTA increasing the free bus network

NYC's slowest bus route is about as fast as walking

By Susan Edelman

idership by Borough 2007-2015

lanhattan and Brooklyn compared to other boroughs. Image:

w York City fell 16 percent between 2002 and 2015 that only gained steam last year. A look at the chan

Helayne Seidmar

Background

Relative Change in NYC Transit Ridership and Population Turnaround: Fixing NYC's Buses, Transit Center

Study Methodology

Case Study	Ridership	Annual Ridership (millions)		
Route	Trend	2010	2016	Change
M9	Increasing	1.5	1.6	10%
M116	Increasing	2.8	3.2	16%
Q66	Increasing	4.1	4.5	9%
M20	Decreasing	1.3	0.8	-40%
M22	Decreasing	1.2	0.8	-34%
M42	Decreasing	4.1	3.1	-24%
M103	Decreasing	4.7	3.2	-32%
Q4	Decreasing	3.3	2.8	-15%

Study Methodology

19:01

19:00

Stopped At Signal

PULL INTO STOP

00:00:05

00:00:13

Pause

Pause

September 19, 2017

September 19. 2017

Q4 LOCAL

Q4 LOCAL

007

007

Avg Operating Speed

Observed Speeds between Timepoints – PM Peak

Observed "Time-in-Motion" Metrics

Time at Signals – PM Peak

Time at Signals – PM Peak

Wait Assessment – PM Peak

Increasing Routes

81%

68%

Scheduled Service

	Avg Change, 2012-2017			
Schedule Changes	Total Run	# of Trips		
	AM Peak	PM Peak	Total	
Decreasing Case Study Routes	+1 minute	+1 minute	-7	
Increasing Case Study Routes	+3 minutes	+1 minute	2	

Schedule Adherence

Other Analyses...

- Blocked and skipped stops
- Fare Evasion
- Wheelchair Use
- On-Time Terminal Departure
- Missed Trips
- Reduced Fares

External Variables – TNC Growth

External Variables – TNC Growth

TNC Pickups by Borough	2015 total	2016 total	2017 total	Change, 15	5-17
Manhattan	30,002,785	53,698,137	76,930,852	46,928,067	156%
Brooklyn	7,961,199	20,513,965	37,871,043	29,909,844	376%
Queens	5,007,041	12,669,289	23,131,017	18,123,976	362%
Bronx	1,971,423	4,109,926	10,477,598	8,506,175	431%
Staten Island	142,152	436,858	1,140,006	997,854	702%
Total	46 M	92 M	150 M	103 M	223%

NYC Taxi and Limousine Commission Trip Data nyc.gov/html/tlc/html/about/trip_record_data.shtml

External Variables – Bikeshare

External Variables – Bikeshare

Sharing riders: How bikesharing impacts bus ridership in New York City

Kayleigh B. Campbell^{a,*}, Candace Brakewood^b

^a School of International and Public Affairs, Columbia University, 420 West 118th Street, New York, NY 10027, United States ^b Department of Civil Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States

ARTICLE INFO

Article history: Received 7 June 2016 Received in revised form 6 April 2017 Accepted 21 April 2017

Keywords: Bikesharing Bus ridership Difference-in-differences estimator Natural experiment

ABSTRACT

The objective of this research is to quantify the impact that bikesharing systems have bus ridership. We exploit a natural experiment of the phased implementation of a sharing system to different areas of New York City. This allows us to use a different differences identification strategy. We divide bus routes into control and treatment g based on if they are located in areas that received bikesharing infrastructure or n find a significant decrease in bus ridership on treated routes compared to control that coincides with the implementation of the bikesharing system in New York Cit results from on preferred model indicate that every thousand bikesharing upcks a bus route is associated with a 2.42% fall in daily unlinked bus trips on rou Manhattan and Brooklyn. A second model that also controls for the expansion of bike during this time suggests that the decrease in bus ridership attributable to bikes infrastructure alone may be smaller (a 1.69% fall in daily unlinked bus trips). Alt the magnitude of the reduction is a small proportion of total bus trips, these fi indicate that either a large proportion of overall bikeshare members are subst bikesharing for bus trips or that bikesharing may have impacted the travel behaves.

Conclusions

- Rider sensitivity to speed, short and reliable wait times, and perception of service quality
- Less sensitivity to schedule adherence

Conclusions

- Address signal timing
- Enforce blocked stops and lanes
- Improve dispatching and on-time departures
- Review stops for potential consolidation
- Be transparent about performance – dashboard launched in March 2018

Local Bus Performance and Declining Ridership – Reasons and Responses

Holly Chase, AICP Senior Transit Planner Sam Schwartz Engineering New York, New York

Sam Schwartz

Transportation Consultants

2018 Sustainability & Multimodal Planning Workshop

Local Bus Performance and Declining Ridership – Reasons and Responses

APPENDIX

2018 Sustainability & Multimodal Planning Workshop

Source: MTA Bus Time

On-Board Data Collection

- On-board survey of bus service during the AM and PM peak periods (7–10am and 4–7pm)
- Survey conducted on Tues/Wed/Thurs, in June and September 2017
- Each route observed for an average of 29 one-way trips over the course of a week
- Also reviewed historical performance data

Blocked/Skipped Stops

Reduced Fare Rate

Observed Fare Evasion

Observed Wheelchair Use

Wheelchair Boardings + Alightings Per Trip				
Route	Avg Count	Minimum Count	Max Count	Avg Elapsed Time (min)
M20	0.5	0	2	1:19
M22	0.5	0	4	2:33
M42	0.1	0	2	1:31
M103	1.4	0	4	2:56
Q4	-	-	-	-
Q4 LTD	-	-	-	-
M9	0.5	0	6	3:00
M116	0.5	0	4	1:14
Q66	0.1	0	2	0:46