

Innovation and Disruption in Urban Mobility: Change Is Coming Fast

Susan Shaheen, PhD Email: sshaheen@berkeley.edu Twitter: SusanShaheen1 LinkedIn: Susan Shaheen

UNIVERSITY OF CALIFORNIA Berkeley Transportation Sustainability RESEARCH CENTER

Overview

- Defining shared mobility, impacts, and SAVs
- Declines in public transit use
- Key questions for public transit
- Importance of data and research in evaluating shared mobility
- SAV developments
- Upcoming studies and current reports
- Final thoughts

Defining Shared Mobility

Shared mobility—the shared use of a vehicle, bicycle, or other low-speed travel mode—is an innovative transportation strategy that enables users to have short-term access to a mode of transportation on an as-needed basis.

Shaheen et al., 2016

Shared Mobility Impacts

Environmental Effects

- Can yield lower GHG emissions via decreased VMT, low-emission vehicles, carbon offset programs
- Can reduce vehicle ownership

Social Effects

- Offers "pay-as-you-go" alternative to vehicle ownership
- Reasonable for college students and low-income households
- Can increases mobility of low-income residents, disabled, and college students
- Provides car use without bearing full ownership cost

Transportation Network Effects

- Takes cars off the road via reduced VMT, forgone/delayed vehicle purchases or sale of vehicle
- Reduced parking demand
- Can complement/complete with alternative transportation modes, e.g., public transit, walking, biking, etc. , and can help address first and last mile issue

(Shaheen, 2017)

Convergence

Declines in Public Transit Ridership

UZA Name	Sum of 2015	Sum of 2016	Change	
Seattle, WA	178,640,154	185,913,534	4.1%	
Houston, TX	83,285,295	85,180,489	2.3%	
Milwaukee, WI	40,610,851	41,476,982	2.1%	
Detroit, MI	36,734,180	37,079,598	0.9%	
New York-Newark, NY-NJ-CT	4,222,700,561	4,241,214,495	0.4%	
San Francisco-Oakland, CA	454,952,418	454,996,256	0.0%	V
Boston, MA-NH-RI	403,464,723	402,554,159	-0.2%	
Pittsburgh, PA	63,990,430	63,570,697	-0.7%	
Denver-Aurora, CO	101,021,365	99,777,407	-1.2%	
Portland, OR-WA	112,440,100	110,985,034	-1.3%	
San Antonio, TX	37,983,886	37,290,201	-1.8%	
Salt Lake City-West Valley City, UT	44,909,741	43,776,825	-2.5%	
Minneapolis-St. Paul, MN-WI	96,636,368	93,716,857	-3.0%	
Chicago, IL-IN	623,466,948	603,747,357	-3.2%	
Urban Honolulu, HI	68,587,549	66,361,162	-3.2%	
Las Vegas-Henderson, NV	72,044,767	69,420,973	-3.6%	
Dallas-Fort Worth-Arlington, TX	75,998,371	72,137,725	-5.1%	
Baltimore, MD	111,070,976	105,214,371	-5.3%	
Atlanta, GA	141,154,134	132,925,293	-5.8%	
Philadelphia, PA-NJ-DE-MD	369,644,085	346,276,496	-6.3%	
Phoenix-Mesa, AZ	69,525,177	64,898,486	-6.7%	
San Diego, CA	94,921,830	88,507,937	-6.8%	
St. Louis, MO-IL	47,250,866	44,020,031	-6.8%	
Cleveland, OH	46,844,074	43,507,057	-7.1%	
Los Angeles-Long Beach-Anaheim, CA	619,459,557	572,589,716	-7.6%	
San Jose, CA	44,718,244	40,763,554	-8.8%	
Miami, FL	156,449,301	141,556,090	-9.5%	
Washington, DC-VA-MD	441,222,366	396,260,838	-10.2%	
Austin, TX	32,795,531	28,893,986	-11.9%	
San Juan, PR	38,853,326	32,289,221	-16.9%	

Increase

No Change

Decrease

Public Transit Ridership Declines

- Numerous studies documenting shifts to ridesourcing/TNCs predominantly from taxi and transit
- National survey (Reuters, 2017)
 - 68% use taxi less often
 - 38% use public transit less often
 - 21% use personal auto less often
- San Francisco (Rayle et al., 2014)
 - If ridesourcing were unavailable
 - 33% would have used public transit; 4% first-last mile
 - 7% would have used personal vehicle instead of TNC
 - 10% would have walked or biked
- Denver (Henao, 2016)
 - "For this trip, how would you have traveled if Lyft/Uber wasn't an option?
 - 22% Public transportation
 - 19% would have driven alone
 - 12% Would not have traveled

Shared Mobility and Public Transportation

More research and evaluations needed to study traveler behavior and elasticity of individual and combined variables

- Cost
- Fare type (e.g., pass, per trip, per mile) and stability (e.g., fixed vs. variable pricing)
- Temporal and spatial scale
- Convenience
- Travel time
- Wait time
- Number of modes
- Other factors

Key Questions for Public Transportation

- When does shared mobility complement public transit and when does it compete?
 - How does it vary by mode & context?

- What factors influence complementarity vs. competition?
- How can shared mobility be used to enhance accessibility to areas without public transit service?
- How can shared mobility be used to improve efficiency and/or reduce service inefficiencies?
- How should public transportation respond to short-, mid-, and long-term changes? (e.g., shared mobility, AVs, SAVs, and other innovations)

Additional Questions for Consideration

- 1) What types of outcomes and performance metrics are important to your agency and why?
- 2) Do particular hypotheses drive your pilot projects?
- 3) Does your agency conduct feasibility studies or market research in advance of piloting?
- 4) Does your agency adjust its pilot projects dynamically, either through a preliminary evaluation or response to real-time data?

Importance of Data and Research

- Need to develop data metrics, models, planning platforms, and methodologies to assess the economic and travel impacts of shared mobility
- Longitudinal tracking and forecasting of modal impacts (temporal/spatial scale)
- Develop ability for public agencies to forecast the economic and travel behavior impacts of shared modes/pilot projects and guide public policy development
- Developing policies that balance data sharing with privacy (user, private companies, and public agencies)
- Key for providing seamless multi-modal integration

"Without data you're just another person with an opinion."

> - W. Edwards Deming, Data Scientist

Evaluating Impacts of Pilots/Shared Mobility

Evaluation Hypothesis

• Based on project specific goals/target impacts

Performance Metrics

 Metrics established in line with project targets/hypotheses

Data Sources

• Based on performance metrics based and data collection plan

Analysis & Evaluation

 Quantitative & qualitative methods, such as surveys, focus groups, stakeholder interviews, and statistical and data analysis, and GIS analysis

(Shaheen and Cohen, 2017)

All SAV pilots with conventional vehicles to date have a steering wheel in the vehicle and an engineer in the driver's seat for safety

Waymo

Uber

NuTonomy

Example Pilot: Early Rider Program, Phoenix, AZ

Example Pilot: Pittsburgh, PA

Example Pilot: One North, Singapore

Waymo Early Rider Program, Phoenix, AZ

- Alphabet's Waymo launched its Early Rider program in April 2017, inviting residents of certain areas of Phoenix, Arizona to ride in their autonomous vehicles
- After a trial period in Phoenix, Waymo plans to expand its fleet from 100 to 600 autonomous Fiat-Chrysler Pacifica Hybrid minivans

(Shaheen, 2017)

Uber, Pittsburgh, PA

- In September 2016, Uber began a pilot in Pittsburgh, PA serving around 1,000 select Uber customers with four autonomous Ford Fusions
- There is a backup driver and engineer present in the front seats

NuTonomy, One North Business Park, Singapore

- In August 2016, NuTonomy launched a public trial of their autonomous vehicles in a 1.5 square-mile section of Singapore, called One North
- NuTonomy partnered with Grab, the Southeast Asia-based ridesourcing company, and vehicles can be hailed via smartphone through Grab's platform

SAV Developments – Planned SAV Pilots

Low-Speed SAV Shuttle Pilots

EasyMile, Treasure Island, San Francisco Bay Area, CA

• EasyMile and the San Francisco County Transportation Authority are planning a pilot to serve first and last mile public transit trips on Treasure Island by 2020 Local Motors Olli, Miami Dade County, FL and Las Vegas, NV

• Local Motors' Olli has been tested in National Harbor, MD and has expansion plans to serve passengers in Miami and Las Vegas

SAV Developments – Planned SAV Pilots

Conventional Vehicle SAV Pilots

NuTonomy and Lyft, Boston, MA

- NuTonomy has been testing its AVs in the Seaport and Fort Point areas of Boston since April 2017
- In June 2017, Lyft and NuTonomy formed a partnership with plans to deploy a SAV pilot serving passengers sometime in the coming months

Delphi and Transdev, Normandy and Paris, France

 In June 2017, Delphi and Transdev announced that they will test AVs in Normandy and outside Paris in advance of building a commercial service starting in 2019, which could be deployed in other markets, including North America

Future Shared Mobility Research

- North American and International Carsharing Market Outlooks (Summer/Fall 2017)
- Impacts Study of Lyft and Uber (Summer/Fall 2017)
 - Study will assess the impacts of travel behavior, vehicle ownership, VMT, modal shift, and GHG emissions
- P2P Carsharing Impact Study (Summer 2017)
- Bikesharing GHG Study (Fall 2017)

(Shaheen, 2017)

Future Shared Mobility Research (cont'd)

- U.S. Federal Highway Administration Studies of Mobility on Demand (Fall 2017)
- U.S. Federal Transit Administration Mobility on Demand Sandbox Independent Evaluation (2018-19)
 - \$8 million funding for an array of mobility pilots with 11 partners (12 locations)
 - Booz Allen Hamilton and TSRC leading the independent evaluation for all sites
 - Measure project impacts and identify factors that may support or impede innovative transportation service models

Final Thoughts

• Change is now very fast, although may feel incremental; is disruption now a constant?

- Ultimately, will people care less about driving and more about connecting with media in vehicles?
- Future something we are creating now. We have ability to forecast what is coming and create preferred outcomes.
- Need more emphasis on social engineering (e.g., machine learning)
- Need more data and research understanding (e.g., pilots)

© UC Berkeley, 2017

Innovative Mobility Highlights, Carsharing Outlook, and Latest Research

Subscribe for the latest updates (Innovative Mobility Highlights, Carsharing Outlooks, Policy Briefs, Research Highlights and more) at: www.innovativemobility.org (bottom of home page)

Recent Reports

https://ops.fhwa.dot.gov/publications/ fhwahop16022/fhwahop16022.pdf

https://ops.fhwa.dot.gov/publications /fhwahop16023/fhwahop16023.pdf

https://www.planning.org/publications/ report/9107556/

(Shaheen, 2017)

Recent Book: Disrupting Mobility

Available at:

https://www.amazon.com/Disrupting-Mobility-Impacts-Innovative-Transportation/dp/3319516019

(Shaheen, 2017)

Acknowledgements

- Shared mobility operators, experts, and industry associations
- Federal Highway Administration
- Mineta Transportation Institute, San Jose State University
- California Department of Transportation
- American Planning Association
- Adam Cohen, Rachel Finson, Elliot Martin, Corwin Bell, Adam Stocker, Mark Jaffee, TSRC, UC Berkeley

Susan Shaheen, Ph.D. Email: <u>sshaheen@berkeley.edu</u> Twitter: SusanShaheen1 LinkedIn: Susan Shaheen