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FOREWORD

Fare Elasticity and Its Application to Forecasting Transit Demand represents
the first comprehensive effort to estimate the fare elasticities of a large number
of transit systems using monthly data, and to test the applicability of the well
known Simpson-Curtin formula in today’ transit environments.

The study provides a general approximation of system-wide bus ridership
loss following a uniform fare increase, that is without changing the fare
structure. It is not intended to replace detailed fare elasticity estimates
conducted for specific transit systems.

The authors of the report are Jim Linsalata, Manager of Research, and
Larry H. Pham, Ph.D., Director of Research and Statistics, American Public
Transit Association.

The analysis shows that the impact of fare changes on bus ridership,
while varying substantially among cities and between peak and off-peak hours,
is more pronounced than previously believed.
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~ ABSTRACT

Transit managers are ‘under increasing —

pressure to obtain sufficient fare revenues
to maintain superior service while reduc-
ing dependence on government assistance.
They need an accurate formula to esti-
mate the impacts of fare changes on tran-
sit ridership and fare revenues. For years,
these managers were given two choices:
constructing a fare elasticity model specific
to their transit systems or applying the
Simpson-Curtin formula which postulates
a fare elasticity of -0.33; i.e., a 10 percent
increase in fare would result in a 33
percent decrease in transit patronage.

The models are usually costly and
time-consuming to construct, causing
delays in the implementation of fare
changes. On the other hand, the
30-year-old Simpson-Curtin formula is
likely to be inaccurate today. Further, it
provides no estimation of the varying fare
impacts between peak and off-peak hours,
or between large and small cities.

The objectives of this study are to
verify the Simpson-Curtin formula using
updated data and modern technologies,
and to provide a set of fare elasticity
estimates for bus service in various cities
during peak as well as off-peak hours.

An advanced econometric model, the
Autoregressive Integrated Moving Average
(ARIMA) model, was used for the estima-
tions. A special survey was conducted to
obtain ridership data 24 months before
and 24 months after each fare change for
52 transit systems. Monthly information
on other factors which may influence
ridership, including gasoline price, vehicle
miles of service, labor strikes, etc., were
also collected. The purpose was to use
the model to isolate the impacts of the
fare changes from those caused by other
factors.

Findings

s On the average, a ten percent increase
in bus fares would result in a four per-
cent decrease in ridership. This shows
that today’s transit users react more
severely to fare changes than found by
Simpson and Curtin.

FARE ELASTICITY - BUS SERVICES

Average (all
hours, all cities) -0.40

s Transit riders in small cities are more
responsive to fare increases than those
in large cities. The fare elasticity for
bus service is -0.36 for systems in ur-
banized areas of 1 million or more pop-
ulation. In urbanized areas with less
than 1 million people, the elasticity is
-0.43.

s Although the data for peak vs. off-peak
services are available for only six tran-
sit systems, the difference between the
fare elasticity levels is very clear: The
average peak-hour elasticity is -0.23
while the off-peak hour elasticity is -0.42,

‘indicating that peak-hour commuters
are much less responsive to fare chang-
es than transit passengers - travelling
during off-peak hours.

FARE ELASTICITY - BUS SERVICES

Cities/Areas with Population of

more than t million loss than 1 milion

-0.36 -0.43




EXECUTIVE SUMMARY

1

Fare elasticity measures the response
of transit patronage to fare changes. In a
simple mathematical sense, it is defined as
the ratio of percentage change in ridership
to a one percent change in fare. For
example, if a one percent increase in fare
results in a half percent decrease in rider-
ship, the fare elasticity is -0.5. The nega-
tive sign (-) indicates that fare and rider-
ship move in opposite directions. If the
absolute value of fare elasticity is greater
than 1 (e.g., elasticity = -1.2), any increase
in fare would cause a larger decline in
ridership, resulting in a decrease of total
fare revenue. Alternatively, an absolute
fare elasticity of less than 1 implies that a
fare increase will result in increased reve-
nues. Knowledge of fare elasticity is
extremely important for transit managers,
as it provides information on the expected
ridership and farebox revenue resulting
from a proposed fare change.

The impact of fare on transit ridership
has been an unsettled issue for many
decades. While it generally is recognized
that a fare increase would result in some
ridership decrease, the magnitude of such
decrease is difficult to measure and can
vary greatly among transit systems. The
problem stems from the fact that ridership
does not respond to fare changes immedi-
ately. However, over a longer time peri-
od, the observed ridership changes may be
caused by factors other than the fare
change, resulting in an erroneous elasticity
estimation.

Dozens of fare elasticity studies have
been completed in the past decades.
Some suffer from serious analytical short-
comings rendering the results question-
able. Others are either overly complicated
or overly specific to individual transit
properties. For example, fare elasticities
are commonly estimated on specific routes
for specific transit systems. The results
cannot be generalized, and the usefulness
of the studies are limited to the particular
situations for which the studies are de-
signed. As a result, most smaller and
medium-size transit operators with limited
research resources have often made im-
portant fare decisions based on a simple
rule of thumb which assumes a fare elas-
ticity value of -0.33 for all transit routes
during all times of day. This method,
commonly referred to as the Simpson-
Curtin formula!, is inadequate to meet the
information needs for determining fare
policies.

This study attempts to establish a fare
elasticity estimation procedure that pre-
serves the Simpson-Curtin simplicity while
using the econometric methods and com-
puter technology of the 1990s. The pur-
pose of this study is two-fold. First, it
develops an advanced econometric model,
the transfer function model, to be applied
by transit systems in estimating fare elas-
ticities. Secondly, the results are used to
search for a pattern of fare elasticity be-
havior which enables those transit systems
without a modeling capability to arrive at

ljohn F. Curtin, “Effect of Fares on Transit Riding,” Highway Research Record, 213 (1968),

8-19.



an approximate elasticity estimate by using

those of similar systems: -To accomplish _

these purposes, the fare elasticities of a
sample of fifty-two transit systems are
estimated, with six systems having the
elasticities broken down to peak and off-
peak hours. The sample is selected such

that transit systems of different sizes,
serving large cities as well as small rural
areas are represented. Clearly, this meth-
od is not as desirable as applying the
model directly for elasticity estimation.
However, it is superior to indiscriminate
use of the Simpson-Curtin rule of thumb.

METHODOLOGY

Overview

Popular methods used for estimating
transit fare elasticity may be divided into
three broad categories:

+ Preference Survey
o Shrinkage Analysis
+ Econometric Studies

Preference Survey. Surveys are con-
ducted to obtain information on the in-
tended modes of travel under various
conditions. For example, survey respon-
dents are asked if they intend to commute
to work by car or transit if the bus fare is
raised by 25 cents, waiting time averages
10 minutes, and the parking cost is $60
per month. With a large number of re-
sponses on similar questions, it is possible
to statistically estimate the relative impor-
tance of the fare, service attributes and
other transportation factors to determine
the fare elasticities for various market
segments.

A major shortcoming of this approach
is that the respondents’ intentions may and
usually do differ from the actual events.
A Chicago study’ found that this method

resulted in high elasticity estimates be-
cause individuals responding to the ques-
tionnaire had assumed that a car would be
available for their journey, whereas in
practice this was not always the case.

Shrinkage Analysis. This approach
measures fare elasticities by monitoring
the ridership levels prior to and after a
fare change. Fare elasticity is estimated
by computing the ratio of the percentage
change in ridership to percentage change
in fare.

This method is simple, but may not
provide accurate results because of un-
avoidable outside interferences. For
example, if a transit authority raises fare
on June 1, the observed decrease in rider-
ship may also be caused by fewer student
riders as the summer vacation begins.
Taking the ratio of ridership change to
fare change between May and June would
capture the effects of both the fare change
and the school year seasonality, resulting
in an erroneous fare elasticity estimate.
The June ridership may be compared to
the previous year’s June ridership to avoid

3, Phillips Cummings, et al., “Market Segmentation of Transit Fare Elasticities”, Transportation

Quarterly, XLIII (July 1989), 418-419.



seasonal bias. The results of this compari-
son could also be misleading-since other
factors, such as changes in gas prices and
transit service, may have influenced rider-
ship during this twelve month span.

Econometric Studies. Most popular
among this group is regression analysis,
which uses historical data to estimate the
demand function for transit patronage.
Econometrics allows the relationship
between ridership and its influential fac-
tors such as fare, time of day, trip purpos-
es, cost of alternative modes, and socio-
economic characteristics of the population
to be expressed in mathematical forms.
The effects of fare changes on transit
patronage can then be isolated to arrive at
unbiased fare elasticity estimates. The
model may be a cross sectional analysis
which uses data over many geographic
areas for a given point in time, or a time
series analysis which models the variation
of fare and demand over time.

From a theoretical standpoint, the time
series analysis is a preferred method. The
cross sectional analysis, which does not
consider the effects of time, may not
adequately capture the responses of indivi-
duals or cities in response to fare changes
over time. Rather, it reflects how differ-
ent population segments behave at differ-

ent fare levels. For lack of better terms,

cross-sectional models are often consid-
ered as an indication of Alongrun adjust-
ments., A Thus, although cross-sectional
estimates have some advantage in fore-
casting structural changes in demand, it
cannot be used to measure the short run
responses of ridership to fare changes with
a reasonable degree of confidence unless
supporting time series information is
available. Nevertheless, data limitations

frequently necessitate indépendem use of

- cross-sectional analysis in fare elasticity
" research and ridership forecasting.

On the other hand, traditional time
series analysis also suffers drawbacks. This
approach commonly involves regression
analysis in which the ordinary least square
(OLS) method is used to fit transit de-
mand functions. Several crucial assump-
tions, including one requiring no serial
correlation present in the error term, are
usually violated, rendering the estimated
transit demand function biased and the
fare elasticities unreliable. This well-
known autocorrelation problem has been
an unresolved issue facing researchers for
decades.

The Transfer Function Model

The present study is a time series
analysis. However, it eliminates the auto-
correlation and other methodological
deficiencies by applying the transfer func-
tion model to estimate the transit demand
function and fare elasticities. This model
is an extended version of the Autoregres-
sive Integrated Moving Average (ARIMA)
or Box-Jenkins model, made popular
among researchers because of the revolu-
tionary advancement of computer technol-

ogy.

The transfer function model represents
a substantial improvement over the stan-

dard OLS-time series method in two ma-
jor aspects. First, it eliminates not only
the autocorrelation, but also the multicol-
linearity and inefficient estimates prob-
lems which are common in OLS models.
Secondly, it allows for a richer dynamic
structure in the relationship between the
dependent variable (transit demand) and



the explanatory variables (fare, services,
gas price, etc.). The fnodel is able to
isolate the seasonal fluctuation of transit
ridership and capture the delayed effects
of ridership responses to fare changes.

When the function is expressed in
natural logarithm, the coefficient of the
fare variable measures the change in
ridership in response to fare change which
is, by definition, the fare elasticity. Mon-
thly time series data for fifty-two individu-
al transit systems are used to estimate
their transit demand functions.

Data Collection

A special survey was conducted to

obtain monthly data for four year periods,
24 months before to 24 months after the
latest identified fare change date for each
transit system. The data requested includ-
ed monthly ridership, vehicle miles, vehi-
cle hours, basic adult cash fare, and total
farebox revenues during peak and off-peak
periods. Other information such as work
stoppages and variation in peak-hour
definitions were also collected. In addi-
tion, monthly data were gathered from
nationally published sources on local
consumer price indexes, gasoline prices,
and local employment for use in the
model.

In total, 189 survey questionnaires were
mailed to transit operators, and 79 were

Table 1. Transfer Function Model Functional Form

|
The transfer function model takes the following general form:

of peopie employed locally.

otherwise.
e, = Disturbance term
t = Time period

k = Time lag

R, = f {SLy. FC;y AC, 4 MCy . | 1)+ €,

R, = Transit ridership, measured by uniinked translt passenger trips.

SL,_, = The service level, measured by revenue vehicle miles and/or revenue vehicle hours.

FC,., = Transit cost, measured by average fare, deflated by the local Consumer Price Index.

AC,_; = Cost of major altemative modes, measured by gasoline price, deflated by the local CPI.
MC,_, = Market characteristics or the size of the transportation market, approximated by the number

I,y = Intervention factors. These include, where appropriate, work stoppages, gasoline shortages
and other abrupt changes. The | variables are given the value of 1 during the event and 0




returned before the internal deadline.
The response rate of 42 percent is consid-
ered very high for this type of survey as
many transit systems do not keep monthly
operating data. Twenty-seven returned
questionnaires were unusable, resulting in
52 useable questionnaires and a useable
response rate of 28 percent.

Model Application

The Time Transfer Function model
was applied to 52 transit systems in cities
of various sizes, ranging from 51,000 to
nearly 10 million in population. In six
cases, for which data are available, the
transit demand functions were estimated
for peak hours as well as off-peak hours.

Generally, the economic behavior of
_ the transit riders is well predicted by the
model. The corrected coefficient of deter-
mination (R?) ranges from 0.51 to 0.97,
denoting that more than 50 percent and
up to 97 percent of the fluctuation in
transit ridership is explained by the model.
Twenty-five cases have a R? of 0.80 or
higher, and for seven cases, the model is
able to explain more than 90 percent of
the ridership variations. Figures 1, 2 and
3 depict examples of how the model per-
forms at different R? levels.

The t-statistics indicate that the fare
elasticity coefficients are statistically sig-
nificant at the 90 to 99 percent confidence
level.

Figure 1. Actual vs. Estimated Unlinked Passenger Trips: R2=0.92 (Denver, Colo.)
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Figure 2. Actual vs. Estimated Unlinked Passenger Trips: R*=0.77 (Gretna, La.)
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Figure 3. Actual vs. Estimated Unlinked Passenger Trips: R*=0.52 (San Jose, Calit.)
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RESEARCH RESULTS

The fare elasticities of bus service for
fifty-two transit systems under study are
presented in Table 2 (all-hour average)
and Table 3 (peak/off-peak differential).
Briefly, the results are as follows:

The all-hour fare elasticity for all
systems averages at -0.40, notably
higher than the Simpson-Curtin
formula.

The elasticity levels of individual
transit systems, however, vary wide-
ly, from -0.12 for Riverside, Calif.
to -0.85 for Toledo, Ohio. The
local population work places, in-
come, driving conditions, transit
services, etc. cause different levels
of sensitivity of travellers to fare
changes. In any event, the large
variation clearly illustrates the
danger of applying the Simpson-
Curtin rule to all areas.

xiv

s The average elasticity for large

cities (more than 1 million popula-
tion) is much smaller (in absolute
value) than the smaller cities, indi-
cating that transit users in large
cities are less sensitive to fare
increases.

s The relatively inelastic transit de-

mand with respect to fare of large
cities holds true for both peak and
off-peak travelling. However, the
differences in off-peak hours are
less pronounced.

The elasticity during off-peak hours
is about twice as high as that dur-
ing peak hours for both population
groups. This finding is consistent
with existing studies.



Table 2. Transit Fare Elasticity Estimates of 52 Transit Systems
(|

: URBAN AREA FARE FARE ELAST
cITY POPULATION ELASTICITY  t-STAT R SQUARED GROUP MEANS
BUS SERVICES IN URBANIZED AREAS WITH MORE THAN 1 MILLION POPULATION
1 Los Angeles, CA 9,479,436 -0.231 5.83 0.87
2 Des Plaines, IL 6,779,799 -0.117 1.75 0.73
3 Detroit, MI 3,809,327 -0.247 3.18 0.92
4 San Francisco, CA 3,190,698 -0.151 2.28 0.88
S Alexandria, VA 2,763,105 -0.412 2.29 0.9
6 Dallas, TX 2,451,390 -0.134 1.77 0.9
7 B8altimore, M 1,755,477 -0.495 3.40 0.78
8 San Diego, CA 1,704,352 -0.270 1.85 0.66
9 Oceanside, CA 1,704,352 -0.350 2.64 0.68
10 Atlants, GA 1,613,357 -0.277 2.7 0.51
11 Phoenix, AZ 1,409,279  -0.321 1.86 0.66 -0.361
12 Seattle, WA 1,391,535 -0.266 2.35 0.86 (0.154)*
13 Everett, WA 1,391,535 -0.429 1.82 0.51
14 Denver, CO 1,352,070 -0.562 20.60 0.92
15 San Jose, CA 1,243,952 -0.460 2.17 0.52
16 Cincinnati, OM 1,123,412 -0.738 1.98 0.80
17 Kansas City, MO 1,097,793 -0.511 4.32 0.92
18 Gretna, LA 1,078,299 -0.354 3.10 0.77
19 portland, OR 1,026, 164 -0.387 4.30 0.64
20 Buffalo, NY 1,002,285 -0.503 3.27 0.84
BUS SERVICES IN URBANIZED AREAS WITH LESS THAN 1 MILLION POPULATION
21 Sacremento, CA 796,266 -0.162 7.58 0.84
22 Riverside, CA 705,175 -0.119 3.96 0.76
23 Honmolulu, HI 582,463 -0.652 5.99 0.80
24 St. Petersburg, FL 520,912 -0.478 3.19 0.74
25 Nashville, TN 518,325 -0.527 3.25 0.82
26 Richmond, VA 491,627 -0.624 2.43 0.70
27 Albany, NY 490,015 -0.456 3.42 0.57
28 West Palm Beach, FL 487,044 -0.605 2.92 0.86
29 Toledo, OK 485,440 -0.855 29.54 0.97
30 El Paso, TX 454,159 -0.294 2.54 0.50
31 Tacoma, WA 402,077 -0.432 4&.70 0.63
32 Allentown, PA 381,734 -0.747 2.60 0.70
33 Grand Rapids, MI 374,744 -0.430 6.89 0.84
3% Flint, MI 331,931 -0.585 2.98 0.87
35 Fresno, CA 331,551 -0.311 4.99 0.7
36 Sarssota, FL 305,431 -0.214 2.67 0.68
37 Chattanooga, TN 301,515  -0.341 4.7 0.88 -0.430
38 Spokane, WA 266,709 -0.527 3.15 0.69 €0.189)*
39 Fort Wayne, IN 236,479 -0.116 1.7 0.90
40 South Bend, IN 226,331 -0.261 4.58 0.66
41 Madison, Wl 213,675 -0.401 2.34 0.a83
42 Eugene, OR 182,495 -0.184 1.89 0.84
43 Lincoln, NE 173,550 -0.500 3.26 0.5
44 South Daytona, FL 170,749 -0.423 2.88 0.61
45 Binghamton, NY 161,132 -0.704 10.95 0.93
46 Lancaster, PA 157,385 -0.428 2.94 0.79
47 Appleton, WI 162,151 -0.255 2.86 0.61
48 Springfield, M0 139,030 -0.481 8.57 0.65
49 Willismsport, PA 58,650 -0.299 2.52 0.75
S0 Oshkosh, WI 52,958 -0.167 3.09 0.86
51 State College, PA 51,298 -0.642 4£.57 0.89
52 Boone, NC Non-U2A -0.528 5.66 0.81
ALL SYSTEMS: -0.403
(0.179)*
* - Standard Deviation
Source: American Public Transit Associstion

Xv



Table 3. Fare Elasticity: Peak and Off-Peak Travel

Off
nized Ar Peak Peak Poputation
Spokane, WA 0.32 073 266,709
Grand Rapids, Ml 0.29 -0.49 374,744
Sacramento, CA' 0.22 0.14 796,266
GROUP | AVERAGE? 0.27 [0.04] -0.45 [0.30] 1 million and less
Portland, OR/WA 0.20 0.58 1,026,144
San Francisco, CA3 0.14 0.31 3,190,698
Los Angeles, CA -0.21 0.29 9,479,436
GROUP Il AVERAGE? 0.18 [0.04] -0.39 [0.16] 1 milion and more
ALL SYSTEMS AVERAGE? 0.23 [0.06] -0.42 [0.22)
Notes: 1. Light rail initiated March 1887, which was during the observation period.
2. The standard deviations of the group and total means are contained in square brackets.
3. Transit systemn serves Marin and Sonoma counties.




CHAPTER 1
INTRODUCTION

Federal policies to reduce government spending have had a substantial effect on the
operating and capital budgets of many public mass transit agencies. With the reduction in
federal subsidies, mass transit has had to search for new funding sources. Table 4 shows
that as the federal contribution decreases, transit systems receive a larger portion of their

operating revenues from state and local governments.

Table 4.
Transit Revenues as Percentage of Total Revenues, All Modes, All U.S. Areas
1981 1989 % change
Passenger Fares 36.7 36.2 -14
Other Operating Revenue 4.6 5.6 21.7
State & Local Operating Assistance 43.8 520 18.7
Federal Operating Assistance 14.9 6.2 -58.4

Source: American Public Transit Association, 1991 Transit Fact Book

Transit systems which raise fares are expected to  Figure 4. Demand Curve

find that the mass transit industry, like most other Eare
goods and services, faces a downward sloping demand
curve with respect to price, as shown at the right in
Figure 4. The downward sloping demand curve means

that as fares increase, ridership will decrease. The D

shape of this demand curve, steeply curving, gently

Ridership

curving or straight line, indicates the severity of the .
ridership loss. The passenger reaction to fare change can be quantified by measuring the

percent change in ridership occuring with a one percent change in fare. The resultant
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—

number is known in economics as the fare elasticity of demand or simply, fare elasticity.

Fare elasticity is an important subject to transit planners for four primary reasons:

1. Ridership and revenue estimation after a fare increase is an integral part of the
transit route scheduling and budgeting processes.

2. There may be serious social and political consequences of increasing bus fares.
Therefore, good fare policy and planning requires “what if” analysis of passenger
behavior.

3. There exists a theoretical point of unitary fare elasticity beyond which increasing
fares will result in decreasing fare revenues and thereby negate any possible revenue
generation through fare policies.

4. The Simpson-Curtin rule of thumb® is over three decades old and there is empirical
evidence that it may not be suitable for small cities or for disaggregated fare analysis.

This study examines the fare elasticity of the fixed-route motor bus operations of
fifty-two American transit systems during the years 1982 to 1988. Furthermore, both peak
and off-peak fare elasticities were estimated for six of these properties. The ARIMA or
Box-Jenkins transfer function model was used to estimate the various fare elasticities and
the corresponding demand functions of each individual transit system. This method utilizes
monthly time-series data to correlate motor bus ridership with the transit system’s fare,
service and socio-economic variables. The model also examines the underlying, inherent
stochastic processes, such as seasonality, which affect transit ridership. The Box-Jenkins
transfer function technique is able to estimate the mathematical relationship or demand

3 The Simpson-Curtin formula states that ridership will decline by one-third percent for each one
percent increase in fare. See John F. Curtin, “Effects of Fares on Transit Riding,” Highway Research
Record, 213 (1968), 8-19.



Introduction : 3

function between current ridership, the past ridership levels, and other current and past
exogenous variables, From these estimated demand functions, individual systems’ fare

elasticities were calculated.

There have been many transit fare elasticity studies since Simpson and Curtin performed
their original work in the 1950s. Using these studies transit planners and economists have
attempted to develop a general rule with which to forecast ridership across the transit

industry. This paper differs from previous fare studies in the following respects:

s The scope of the study is very large. In compiling this study, the all-hours
ridership function of 52 transit systems was examined. Additionally, the peak and
off-peak hours ridership functions of six transit systems were investigated. These
agencies operated large, medium and small fixed-route bus service in every area
of the United States. Most other fare studies were conducted or sponsored by
transit agencies and focused only that particular system’s elasticity.

s Most fare elasticities were estimated over an analogous forty-eight month
observation period in the time space of 1982 to 1988. In contrast, other
researchers have grouped elasticities from fare changes studies which took place
as much as 30 years apart* This time similarity lessens the shift in the demand

curve which occurs because of changes in technology and consumer attitudes.

s Since all fare elasticities were estimated using nearly identical statistical
procedures, the elasticities presented in this study are directly comparable across
transit systems. Previously, fare elasticity has been estimated by binary choice

models, before-after comparisons and cross-sectional analysis, as well as

4 See Patrick Mayworm, et al., Patronage Impacts of Changes in Transit Fares and Service, p. 19
and Appendix A where fare elasticities are aggregated from studies as early as 1948 and as late as
1979.
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time-series analysis. Elasticities estimated through application of these different
statistical methods within a single transit system seldom concur, usually because
each of the methods imposes distinct assumptions and restrictions. Although
which method best represents the true demand curve is subject to discussion, the
direct comparison of the results of different methods is impossible without
vigorous calibration.

® A practical application of the fare elasticities is presented. Used correctly, the
techniques demonstrated herein will permit the transit planner to estimate
ridership loss after a fare change within a certain confidence interval.

Chapter 2 discusses the methodology in more detail. It is designed to prepare the
reader with the necessary background to understand how the elasticities were estimated and
why the transfer function model was chosen. Chapter 3 presents the resuits and offers some
real world applications. The final chapter demonstrates how to estimate and interpret fare
elasticities. The major areas discussed in this paper are:

s Chapter 2: Theory and Methodology of Model Estimation is a technical description of

the econometrics used to estimate the fare elasticities.

a Chapter 3: Empirical Testing demonstrates how the data needed for the fare elasticity
analysis was collected. It describes the model applications, elasticity findings and
their implications on the effects of fare changes on bus ridership.

s Chapter 4: Use of the Transfer Function by Transit Systems discusses the steps required
to estimate local fare elasticities and how the results are interpreted.

w Appendix A: Review of Selected Fare Elasticity Studies reviews the methods and
findings of previous studies on transit fare elasticity.
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s Appendix B: Survey Questionnaire Form is a sample of the Fare Impact Survey which

was sent to 189 transit agencies in May 1988.

s Appendix C: Equations and Variables presents the equations estimated by the model

in standard regression output format.

s Appendix D: Bibliography lists the books, articles and other sources of information

consulted during the course of this study.






CHAPTER 2
THEORY AND METHODOLOGY OF MODEL ESTIMATION

Functional Forms of Mass Transit Regression Models

Within a certain transit market at a given point in time ¢, a generalized demand model®
for public mass transit ridership can be hypothesized to take the following form:

R, = f(SL, FC,, AC,, MG, §,, L) + ¢, (1)
where:
R, =mass transit ridership

SL, =level of service and accessibility supplied by the transit system
FC, =total (fares and time) costs of traveling by mass transit

AC, =total costs of traveling by an alternate mode

MC, =travel market characteristics including city size and demographics

S, =seasonal factors
L =non-periodic interventions such as work stoppages and special promotions
€, =random error

The demand function described in equation 1 could be estimated with regression analysis

to yield a mathematical model of the form shown in equation 2.
R, = By + B,SL, + BFC, + BAC, + BMC, + B;S, + Bk + ¢, @

In equation 2, all independent variables take their previoﬁs definitions, fl‘ is the transit
ridership estimate, 8, through B¢ are the estimated regression coefficients of the correspond-
ing explanatory variables and e, is the estimated error term, which theoretically should be
purely random, but may not be random because the model is a simplification of reality and

may omit variables which influence ridership.

5 The methodology used in this research was first proposed in Michael Kyte et al., Development
of Time-Series Based Transit Models. The reader is urged to refer to that document for an in-depth
dissertation on this subject.
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Fare elasticity, which measures the responsiveness of ridership to changes in fare, is
defined as the percentage change in transit trips resulting from a one percent change in fare,
holding constant the effects of all other determining variables. By convention, the Greek
letter ¢ (epsilon) is used here as the symbol for elasticity. The general equation for
calculating fare elasticity at any point® on the demand function is:

. . _. .8 _FC _ AR/R _ AR _FC __FC
Fare point elasticly = ¢, = or6*® “ircjic "irc & PR ©

Notice that after estimating the coefficients (8) of the transit demand function, one may

then calculate estimates of elasticity for each of the explanatory variables.

Implicit in the fare elasticity calculation is the fact that its value is dependent upon both
the shape of the demand curve and the point on the demand function at which the elasticity
is measured. For example, with a linear demand curve elasticity will vary with the values
of FC and R and, for comparison purposes, elasticity is usually calculated at the point of the
mean of the independent variable. With a hyperbolic demand curve, the elasticity will be
constant and the regression coefficient (8) will also be the elasticity value. Also, for
forecasting purposes elasticities are more valuable if they are evaluated at the most recent

points or over a range of relevant values.

The general demand function shown in equation 1 has been used to model transit
ridership and to estimate fare elasticity with varying results. Usually the estimated fare
elasticities from such models have been slightly less elastic than the frequently used Simp-
son-Curtin’ formula of -0.33. However, serious statistical problems may develop, causing
the estimated elasticities to be much different than the true elasticities, when applying the
model described in equation 2. In order of importance, these difficulties are outlined below.

© Note that at the limit, where AR approaches 0, AR/AFC = aR/3FC

7 See John F. Curtin, “Effect of Fares on Transit Riding,” Highway Research Record, 213 (1968),
8-19.
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1. Specification errors. This type of error includes the omission of major e_}planatory
variables, as well as the inclusion of irrelevant variables and linear estimation of a
model which is actually non-linear. These errors will give rise to biased and inconsistent
parameter estimates and thereby decrease the confidence one can place in the resultant
elasticity estimates. For instance, studies® have shown that the average walking time
to the bus stop is a significant ridership determinant. However walking time data on
a system-wide basis are frequently unavailable and therefore omitted from most

estimation models.

Absence of lagged relationships is another type of specification error whereby the
non-linearity of a function is not explicitly accounted for in the model. An accepted
theory of marketing is that the consumer does not respond instantaneously to the
introduction of a new product.” With regards to mass transit, this theory is plausible,
as it will take some time for passengers to learn about a new bus route and to adjust
their transportation routines to take advantage of the new service. The true ridership
pattern could take six months or longer to fully develop. Some studies recognize this
effect by including a lag structure in the model, but most transit analyses have ignored

this delayed market reaction.

2. Multicollinearity. When a high degree of correlation exists among the explanatory
variables, the interpretation of the individual coefficients will be quite difficuit.
Although there is no loss in the predictive power of the model, the reliability of the
individual elasticity estimates will be diminished. Multicollinearity is widespread in
business data because economic indicators tend to move in harmony. In many business

applications multicollinearity is overlooked, since the general forecasting ability of the

8 For example, see Jason C. Yu and Upmanu Lall, 4 Bi-Level Optimization Model for Integrating
Fare and Service Structures to Minimize Urban Transit Operating Deficits, pp. 35-46.

9 See E. Jerome McCarthy, Basic Marketing, pp.307-334 for an explanation of the Product Life
Cycle Theory.
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simulatjon is usually not affected. Multicollinearity may become a problem when the
model is used to determine the influence of a particular factor, such as fares, on the

market structure.

3. Serial correlation of errors. Serial correlation or autocorrelation occurs when the
error term of a preceding period is highly correlated with that of a succeeding period.
Serial correlation may be sequential, cyclical or some combination of the two. When
serial correlation is present, the error terms are not randomly distributed and therefore,
the expected value of the sum of the errors is not zero. Violation of this assumption
usually has serious consequences. For example, if one is predicting the growth of
ridership, an overestimate in one month will lead to an overestimate in succeeding
months if serial correlation is present. Also, a serious problem can arise when serial
correlation biases the standard error of the regression and leads to the acceptance of
a parameter when in reality it should be rejected. Again, the elasticity estimates will
be affected. In one case, a model re-estimation with corrections for serial correlation
yielded elasticity estimates which were half the original estimates.? The Durbin-Wat-
son statistic can be used to test for autocorrelation and corrective techniques, which are
available within the ordinary least squares framework, may then be applied.!*
However, the Durbin-Watson test is frequently inconclusive and therefore the effects

of serial correlation are sometimes ignored.

4. Failure to account for supply-demand dynamics (simultaneous equations bias).
Given a truly simultaneous system, a model which fails to account for the interaction
of a dependent variable on an explanatory variable (e.g. ridership on service level) will

10K yte, 1, 57.

11 The most familiar technique is the Cochrane-Orcutt procedure, but others are available. See

Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models & Economic F orecasts, pp.154-158.
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“Figure 5. Supply-Demand Dynamics

produce estimators which are both incon-
sistent and biased.!? Knudson and

Service

Kemp!® partially resolved this problem
by designing an instrumental variable for
the number of bus miles traveled each

month as a function of a set of exogenous

variables. The predicted bus miles was Ridershi o

then substituted as an instrument for the

observed bus miles in the estimation of

the demand equations. However, to fully model ridership-service dynamics, a true
simultaneous estimation model is required, since there are secondary and tertiary effects.
As shown in Figure §, service affects ridership which will affect service which will affect
ridership and so on. For example, when ridership declines service is usually reduced,
which in turn leads to an additional ridership decrease which may cause further service
cuts. Other researchers have worked around this problem by using monthly data since
the degree of simultaneity of monthly transit data is certainly less than that of annual
data,' due to the delay between rider demand and the reaction of the transit agency
in increasing or decreasing service. A reasonable assumption is that supply-demand

interactions may be overlooked when monthly data are used.

The Transfer Function Model

This model, newly developed in the past decade, combines both time-series analysis and
regression analysis to help alleviate the statistical problems previously discussed. It has been

12 1bid., p.339.

13 Bill Knudson and Michael A. Kemp, The E, ffects of a 1976 Bus Fare Increase in the Kentucky
Suburbs of Cincinnati, pp.17-18.

M George H.K. Wang and David Skinner, “The Impact of Fare and Gasoline Price Changes on
Monthly Transit Ridership: Empirical Evidence From Seven U.S. Transit Authorities,” Transportation
Research, 18B, 29-41,
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proven to prodﬁce a better forecast than would have been obtained by using either of these
techniques alone.’® The strength of the transfer function model is that it can explain the
“unexplained” variance of the regression model which can not be accounted for structurally.
It assumes that the estimated error term e, of the regression model is not truly random and
hence contains information which may be used to further define the model and that e, is
mathematically related to and can be simulated by its past values and random disturbances.

To construct a ridership transfer function model, a regression model in which ridership
is a function of transit system operating characteristics and local market demographics is
built. A time-series model is then formulated to explain the behavior of the residual term
of the regression. Lastly, the two model specifications are joined and the coefficients are
then estimated simultaneously using non-linear least squares. This technique is relatively
new and has proven to be very useful for business forecasting. Although a comprehensive
exegesis of the transfer function model is beyond the scope of this paper, the basic
methodology as it applies to transit will be covered in this chapter. Readers unfamiliar with
the notation and terms used here should consult an econometric or statistical textbook!®

and advanced readers may wish to skip this section entirely.

In order to understand the transfer function model, one must first comprehend the
ARIMA (autoregressive, integrated, moving average) model and three time-series analysis
concepts: the autoregressive process, the moving average process and stationarity. Auto-
regression expounds on the idea that one can forecast the future values of a particulaf series
by examining only the past and current observations of that same series. For mass transit

demand, a typical autoregressive equation may take the form:

R, =¢R,, + a, 4)

1% pindyck and Rubinfeld, p.593.

16 Suggestions are Henry J. Cassidy, Using Econometrics: A Beginner's Guide, Robert Pindyck and
Daniel L. Rubinfeld, Econometric Models & Economic Forecasts, and Walter Vandaele, Applied Time
Series and Box-Jenkins Models.
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If R, is June’s total ridership, then equation 4 is stating that June’s ridership is a ¢
proportion of May’s ridership plus an error term a,, which is random and therefore does not
depend on past observations.” Higher order autoregressive processes are also possible;

equation S presents a second order autoregressive model.

R, =¢R,, + o:R; + 4 &)

Following the previous example, equation 5 says that June’s ridership is a ¢, proportion
of May’s ridership plus a ¢, proportion of April’s ridership plus an unrelated error.
Equation 4 is designated as an AR(1) process while equation 5 is an AR(2) process. The
general AR(p) ridership model is given in equation 6 where p is the order of the auto-
regressive process and corresponds to the number of parameters, ¢, to ¢,, which must be

estimated.'®

Rt = ¢1Rt-l + ¢2Rt-2 +...¢ ¢pRt-p + at (6)

Where the autoregressive process relates R, to its past values, the moving average
process relates the current value of R, to the present and past random errors,
a,a,, a,, ...a,, Using the mnemonics of the autoregressive process, a first order
moving average model, MA(1), in which ridership is a function of the current and previous

errors is given by:
R, =a,-8,a,., ) )

Equation 7 states that an estimate of ridership at time ¢ can be calculated by multiplying the
past error, a,_, by the moving average parameter, §, and then subtracting this from the
current error, a,. Of course higher order moving average models are also possible and the
general moving average model is specified as MA(q), where q is the order of the moving
average process and corresponds both to the number of parameters (¢, to 8,) which need

7 Notice the use of a, which is a truly random or “white noise” process instead of e, which may
not be white noise due to the statistical problems explained previously.

18 walter Vandaele, Applied Time Series and Box-Jenkins Models, p.39.
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to be estimated and the number of lagged a,’s. The form of the qth order moving average
process, MA(q), is represented by equation 8.

Ri=a,-0@a.,-6a.,-...-04,, ®

As with most statistical forecasting techniques, time-series modeling requires that certain
statistical relationships are assumed. The most important assumption is that the time-series
data must be stationary. To be stationary, the following three conditions must hold true for

a particular time-series:

1. the mean is constant so that the mean of R, = E(R,) = u
2. the variance is constant so that the variance of R, = E[(R, - »)’] = ¢*

3. the correlation between a series value at time t (R,) and a series value at time t-k
(R,.;) depends only on the time lag k and not on the time period, t. Mathematically,
this may be represented as:

the autocorrelation (R, R,)) = E[(R, - u)(R, - u)}/c® = p,_,

The reason for the stationarity assumption may be obvious. Time-series analysis
attempts to simulate the underlying stochastic process which generated the original data.
It is only if the characteristics of this underlying process are invariant with respect to time
can one represent the time series over past and future intervals by a simple algebraic
model.® That is, only if the stochastic process is stationary and therefore fixed in time,
can one model the process by an equation with fixed coefficients that can be estimated from
past data. Those readers who are familiar with regression analysis may recall similar
assumptions whereby the structural relationships between the dependent variable and the
explanatory variables are assumed to have remained constant over time and about the

homoscedasticity of the error terms.

19 Pindyck and Rubinfeld, p.497.
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Figure 6. Major Trends of Transit Ridership
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In reality, most time series used in business analysis are not stationary and display some
sort of consecutive or cyclical trend, as is true with transit ridership. Figure 6, Major Trends
of Transit Ridership,?® shows the trend of U.S. transit ridership from 1900 to 1989. Both
the mean and variance of annual ridership are not constant over time. Of course, monthly
data only exacerbates the non-stationarity of the existing ridership trends by introducing
seasonal cycles as can be seen in Figure 7, Monthly Bus Ridership.?' Therefore, all three
time-series assumptions have been violated with the result that transit ridership data is non-

stationary.

The first step then, is to transform transit ridership from a non-stationary serieS to a
stationary series before time-series modeling techniques can be employed. To make a data
series stationary, one must first reduce the inherent volatility, and so induce a constant
variance, and second, remove any consecutive or cyclical trends. Possible mathematical

transformations to stabilize the variance include logarithmic, square root and power

2 American Public Transit Association, 1990 Transit Fact Book, p.40.

21 The data for Figure 7 is from the Pinellas Suncoast Transit Authority, Clearwater, Florida.
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Figure 7. Monthly Bus Ridership
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functions. The log transformation is especially effective when the variance of the series is
proportional to the mean and when the mean changes at a constant percentage rate,?
which is usually the case with business data. Transformations to remove the trend include
consecutive differencing and also seasonal differencing for monthly or quarterly data. For
monthly transit ridership, it has been found that natural log*® transformations with first
order consecutive differencing and first and maybe second order (12 and 24 month) seasonal
differencing are usually sufficient to generate a stationary series. In practice the logarithmic
transformation must be performed first because differencing will produce negative values
for which the log is undefined. These transformations, which are necessary to achieve
stationarity, make up the integrated part of the ARIMA acronym.

Having separately illustrated both the autoregressive and moving average processes and
the concept of stationarity, the next step is to merge them into the general ARIMA(p,d,q)

model, which is defined in equation 9.

22 Vandaele, p.18.

23 By convention natural logarithm (log to the base e) is used in this report.
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¢(B)(1-B)" In(R,) = 6(B)a, ®

where:

B = the backward shift (or backshift) operator where:
B(R,)=R,., and B*(R,)=R,.,
= the autoregressive characteristic polynomial
= the moving average characteristic polynomial
= the order of differencing required to induce stationarity in the series R,
= the order of the autoregressive process
= the order of the moving average process
= the random error term
= the transit ridership time-series
= the natural logarithm operator

EWR.OoUWase

In the context of transit, the ARIMA(0,1,1) model, which has no autoregressive process, says
that the first difference, R, - R,_, satisfies the MA(1) model. Mathematically, this can be

expressed as:
R.-Ri.,=a,-6a,, (10)
Ri=Ri,+a-0ba, ' (11)

The ARIMA(1,1,0) model, which has no moving average process, states that the first
difference, R, - R, satisfies the AR(1) model. Mathematically, this is expressed as:

R,-Riy = o(R;-Ryp) + a . (12)
R, =(1+¢)R,,;-¢R,,; + aq (13)

or

or

The usefulness of the ridership model would be greatly enhanced if it could represent
transit’s seasonal nature. The model should be able to exploit correlation between the
current month’s ridership level and the ridership level of the same month in the previous
year(s). In fact, another form of the ARIMA model, called the general multiplicative

seasonal model, can account for seasonality.  This model is symbolized as
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ARIMA(p,d,q) x (P,D,Q), where P is the order of the seasonal autoregressive process, D
is the order of seasonal differencing, Q is the order of the seasonal moving average process
and s is the span of seasonality. Mathematically, this model is expressed as:

#(B)#(B)(1-B)*(1-B")° In(R,) = 8(B)e(B)a, (14)
where:

d = the order of non-seasonal differencing required to induce stationarity

D = the order of seasonal differencing required to induce stationarity

¢ = the non-seasonal autoregressive characteristic polynomial of the form:
¢(B)=1-¢,B-¢,B*-...-¢B°

¢ = the seasonal autoregressive characteristic polynomial of the form:
#B)=1-¢B -8B*-...-8B"

§ = the non-seasonal moving average characteristic polynomial of the form:
é(B)=1-6B-6,B*-...-0B

© = the seasonal moving average characteristic polynomial of the form:
eB) = 1-6,B'-6,B*-...-6,B¥

s = the span of seasonality (i.e. s=12 months, 2s=24 months for monthly data)

B = the backshift operator where B(R,)=R,_, and B*(R,)=R,

a = the random error term

R = the transit ridership time-series

In = the natural logarithm operator

As with the non-seasonal ARIMA model, perhaps an example*® may serve to clarify
the methodology. Consider the case of the first order consecutive and seasonal auto-
regressive model, ARIMA(1,0,0)%(1,0,0);,. Suppose that monthly.ridership R, can be
represented by the first-order seasonal AR model or SAR(1) model:

Ri-#R ;2 =e (15)

%4 yandaele, p.58.

25 1bid., pp.59-60.
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where &, is the séasonal first-order AR parameter and alternatively can be written using the

backshift operator (B) as:
(1- ¢,B®)R, = ¢, (16)

Assuming that the error term e, is not purely random, it could be represented by a
first-order autoregressive process in the consecutive months, AR(1), as shown in

equation 17.

€ = ¢,6., + a, (17)
or, again using the backshift operator:

(1- ¢,Be, = a, (18)

Here a, represents the purely random white noise process. Equation 18 can be thought of
as representing the influence of the successive trend on transit ridership while equation 16
can be thought of as representing the effect of the seasonal trend on ridership. Replacing
e, in equation 18 with equation 16 gives the first-order consecutive and seasonal auto-
regressive model ARIMA(1,0,0)x(1,0,0),, for transit ridership:

(1-¢,B)(1- &,B®)R, = g, (19)

A similar equatién can be developed for the consecutive and seasonal moving average
model and the two models may then be combined. In practice, the orders of the parameters
p, d, g, P, D and Q are all small, typically two or less?® and are determined through
analysis of the autocorrelation function and the partial automnelaﬁon function of the
residuals. The reader is urged to refer to an econometric text for in depth instruction in the

use of these tests for specification of an ARIMA model.

6 K yte, 2, 32-33.
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Mode! Application: Estimating the Transit Demand Function

The last step in building a transfer function model is to combine the structqral
regression’’ model with the ARIMA model. Many forms have been proposed for the
structural modeL but unlike the time-series model which can be estimated using only past
ridership data, the regression model is constrained by the availability of explanatory data.
When a critical explanatory variable’s data are unobtainable, a suitable proxy must be used.
All of the transit proxies used in this study were chosen because they are standardized
statistics, reported to the Urban Mass Transportation Administration by transit systems
receiving federal funds under Section 9 of the Urban Mass Transportation Act of 1964 as
Amended, and hence should be kept by most urban public transit agencies.

The Variables

As a measure of transit demand, system-wide unlinked passenger trips were used as a

proxy for system-wide ridership, R. Unlinked passenger trips are:

Transit trips taken by both initial-board (originating) and transfer (continuing)

transit patrons. Each passenger is counted each time that person boards a

transit vehicle regardless of the type of fare paid or transfer presented.?®
Using unlinked passenger trips as a ridership proxy raises the bus transfer problem. For
example, a patron may take two different buses to work, but perceives the two bus rides as
only one “work trip.” Linked trips probably better represent how a bus rider sees transit
service, but unfortunately linked trips are not commonly reported. Hence, unlinked trips
were used with the assumption that the ratio of transfers to unlinked trips remained constant

over the observation period.

37 Unlike time-series analysis, the basics of regression analysis will not be covered here as many
transit planners are already familiar with this technique.

28 American Public Transit Association, 1987 Transit Fact Book, p.80.
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» is the major deter-

minant of transit ridership. For level of service, either vehicle revenue miles or vehicle
revenue hours were used as a proxy.®® A probable drawback of this substitution is that
these surrogates are gross measures of system service and may not capture important service
factors such as reliability, in-vehicle time, seat availability, waiting time and walking time
to the bus stop. However, vehicle miles or vehicle hours will capture significant route
extensions or contractions which affect waiting time and in-vehicle time. Dividing vehicle
revenue miles by vehicle revenue hours yields a measure of average bus speed and changes
in bus speed roughly approximate in-vehicle time changes. Assuming that walking distances,
seat availability and reliability do not drastically change over the observation period, vehicle

revenue miles and revenue vehicle hours should be acceptable measures of service level.

Intuitively, the coefficient of SL should be positive; as the level of service increases,
ridership should also increase. An aggregation® of 23 cases examined in previous studies
produced a mean bus vehicle miles elasticity of +0.64 + 0.30. One would also suspect that
a lag relationship exists between ridership and service levels. A study by Kyte et al. suggests
that “the impacts of service level changes in the urban sectors lagged about two quarters
[when analyzing quarterly data] or eight to ten months [when analyzing monthly data).
Suburban service changes usually showed less of a delay, often one quarter or one
month.”™! Accordingly, in formulating the explanatory structure, service level lags of one
to twelve months were tested by the cross correlation function along with the current

month’s service level.

2° The definition of Vehicle Revenue Miles is “total number of miles traveled by revenue vehicles
while in revenue service. Excludes miles traveled to and from storage facilities and other deadhead
travel.” The definition of Vehicle Revenue Hours is “total number of hours that a vehicle is in
revenue service. Excludes hours consumed while traveling to and from storage facilities and during
other deadhead travel.” These definitions are from National Urban Mass Transportation Statistics,
1983 Section 15 Annual Report, Urban Mass Transportation Administration, p.C-4.

30 patrick Mayworm, et al., Patronage Impacts of Changes in Transit Fares and Service, p.65.

1K yte, 1, 57.
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For the total cost of traveling bv mass transit FC, two fare measures were tested in the

model, the base adult cash fare (base fare) and the average fare. Both fare measures were

deflated by the appropriate CPI so that the real fare changes were measured in constant

instead of nominal dollars. The definition of the base adult cash fare in this report is:
The amount of fare paid for a single ride, excluding zone and transfer charges,

during the off-peak period by passengers who are not entitled to reduced fares and
who pay the fare with money.

There are a few problems with the base fare. First, it is not applicable to a significant
number of passengers, such as express and discount riders. Second, when the base fare is
increased, the percentage change is not usually the same for all riders, especially if the fare
structure has been altered contemporaneously. On the positive side, the base fare is easily
incorporated into the model and any change in the base fare unequivocally marks some sort

of price change for most passengers.

The average fare, which is calculated by dividing passenger fare revenues for transit
service® by unlinked passenger trips, is not without criticism. First, unlike the base fare,
the average fare is subject to measurement errors. Although the errors are expected to be
smallest in those systems which have registering fare boxes in their vehicles, an estimate of
the size and effects of these errors is not available. Second, the average fare will change
depending on ridership composition. For instance, student discounts, which are not
frequently used in the summer, will increase the summer months’ average fare even though
the real price facing the transit rider has not changed at all. More importantly, the average
fare is usually not the price that the consumer at the margin, upon whom the pivotal
economic concept of marginal utility is based, must pay. Ideally, one would create a

32 The definition of passenger fare revenues for transit service is “revenues earned from carrying
passengers along regularly scheduled routes. Includes the base fare, zone premiums, extra cost
transfers and quantity purchase discounts applicable to the passenger’s ride. Also included is * park
and ride’ revenue. Excluded are charter service revenues, school bus service revenues, non-transpor-
tation revenues and all fare revenue remained by the contractor operating the route.”
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weighted average fare using the number of passengers who paid that fare as the weight for
each fare category. This weighted average fare would then be deflated by the local CPI.
However, it was deemed that reporting data by fare category would be burdensome to the

survey respondents.

The sign of the coefficient for FC should be negative. Economic theory states that as
the price of a good or service increases, less of that good or service will be consumed. An
aggregation®® of 12 cases in prior studies produced a mean bus fare elasticity of
-0.35 + 0.14. Note that this value is similar to the Simpson-Curtin formula.

Intuitively, a fare increase would cause a wide range of responses over time. Some
patrons who could easily switch to an alternate mode, like walking, would leave the system
immediately. Other patrons would consider alternate transportation and begin taking action,
such as buying an auto or making carpool arrangements, which would empower them to
modify their transit routines in the near future. Still other patrons would make long-run
adjustments such as finding employment nearer to their home or moving closer to their
workplace. Kyte et al,, found that the “effects of fare changes typically were instantaneous,
usually occurring in the same period as the implementation of the fare change. However, some
effects were measured for one month after a fare change for the system data thus suggesting an
exponential decay function.™ Other authors have speculated that the sharp ridership
decline experienced right after a fare increase is only a drastic, short-lived rebuttal of the
price increase, akin to a consumer boycott. This line of thought goes on to explain that a
good portion of the passengers lost during the first few weeks after a fare increase will be

recouped in later months.>® Another researcher, Kemp, states that “most of the ridership

= Mayworm, p.x.
M Kyte, 1, 58.

3% Transport and Road Research Labs, The Demand for Public Transport, p.112.
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response to a faré change is experienced over about six to nine months following the change.”®
In any case, it seems that a lag structure is vital to understanding the transit market’s
reaction to price changes. Therefore, like the service variable, the cross correlations
between ridership and the current value and first 12 lag values of fare were examined.

There are other costs incurred by transit patrons. Some of these costs, such as lack of
privacy and comfort, have an enormous range of personal utilities. Others, like waiting time
and walking time, are very difficult to quantify on a system-wide basis. Because of
measurement problems, these costs have not been included. This is not to deny their
existence. It is merely that a structural model of their effects could not be built within the

framework and resources of this study.

ing mode

local gasoline price deflated by the local CPI was used. Although there are other alternate
modes, such as walking, bicycling and rail transit, whose costs are not related to gasoline
prices, the automobile is by far transit’s predominant competitor. Furthermore, it was

ave
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assumed that only variable costs are relevant in comparing transit costs with auto costs. The
justification is that the consumer does not consider fixed auto costs, such as depreciation and

insurance, in the short-term modal travel decision.

The primary automobile variable costs are gasoline and oil at 5.86 cents per mile,
maintenance at 1.12 cents per mile and tires at 0.64 cents per mile.3” Of these three costs,
gasoline is the largest and the only daily out-of-pocket expense. These figures suggest that
auto drivers would consider mostly gasoline costs and therefore gasoline price should be the

primary factor in the modal travel decision. Other large out-of-pocket automobile costs are

3¢ Michael A. Kemp, Planning For Fare Changes: A Guide To Interpreting and Using Fare
Elasticity Information For Transit Planners, p.36.

37 American Automobile Association, Your Driving Costs, 1980 edition, p.3.
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-parking and tolls. A study®® in the Twin Cities area shows that the cross elasticity of bus
demand to automobile parking costs for work trips in the CBD is +0.51. Clearly, parking
costs are very important. However, these costs are also extremely geographically diverse,
even within large cities, and vary from a high of $300 per month in Manhattan to a low of
$50 per month in Miami.*® Consequently, no readily available national time-series data
exists and they are excluded from the model. '

Concerning prior research, an aggregation* of four cases in earlier studies produced
a bus demand to auto operating costs cross elasticity of +0.74 + 0.23. This is theoretically
consistent since the cross elasticity between a good or service and its substitute should
always be positive. That is, as the price of the good or service increases, the demand for
the substitute should also increase and vice versa. There are two cases of interest here.
One case is where the car driver leaves his auto for the bus and the second case is where
the bus passenger abandons the bus for a car. In the first case, the ridership impact should
occur shortly after a significant automobile operating cost increase, since the skills and
resources needed to patronize mass transit are easily acquired. In the second case, one
could envision a longer lag since the bus-to-auto switch may involve the purchase of

equipment or the obtaining of a driver’s license.

Local employment, as reported by the U.S. Bureau of Labor Statistics in the monthly
periodical Employment and Earnings, was used as a surrogate for the travel market
characteristics, MC. Cross sectional studies frequently use additional demographic data such
as population income and age as measures of the size of the travel market. This data,
collected by the Census Bureau, is not readily available on a monthly basis. The local

38 Mayworm, p.29.

%9 David Landis, “Prices For Big-City Parking Places Roll Higher,” USA Today, September 10,
1987, p.1.

40 Mayworm, p.28.
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employment figure is an excellent measure of the work trip travel market, but a poor
measure of the market size for some other types of transit rides, such as trips taken by the
elderly, students and the very poor. However, remember that employment is closely related
to variables such as income and the economic level in general, which have a powerful
influence on all segments of the transit market. Some evidence of this can be gained by
referring to Figure 6, Major Trends of Transit Ridership, where one can see that the Great
Depression caused a steep decline in ridership between 1929 and 1939. Consequently local

employment should be a good proxy for travel market size in a system-wide demand study.

Since demand for mass transit is dependent upon the level of travel inducing
activities,*’ ridership should be strongly and positively related to the general economic
level. Therefore, as employment decreases (increases) then ridership should also decrease
(increase). Previous studies have shown that employment elasticities range from +0.50 to
+0.70. One researcher reported an employment elasticity of 1.086, meaning that a 1.086
percent increase in ridership occurs for each one percent increase in jobs.*® Conceivably,
employment elasticities greater than one could occur when employment is increasing and
when the newer workers have different transportation practices than the existing workers.
There is some evidence that this happened during the time frame of this study when a
significant number of women joined the workforce. From 1980 to 1987 the U.S. civilian
labor force increased by 13 million, of which 63 percent were female.** Also, 12.1 percent
of female workers used public transportation for the worktrip, while only 7.5 percent of male

11 Kemp, Planning For Fare Changes, p.8.
2K yte, 1, 58.

43D.C. Agrawal, “The Factors Affecting Mass Transportation Ridership: An Analysis‘," Transit
Journal, Summer 1987, p.64.

4 U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States
1989, p.376
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workers used public transportation.*® Lastly, since 51 percent of U.S. households have an
average of less than two vehicles,*® the second working adult may have had to use mass
transit. Therefore, it is probable that the new workers used mass transit at a higher rate
than the existing workers. An example may be conducive to understanding this concept.
Suppose that in a hypothetical city there are 1,000 workers and five percent of these
workers, or 50 workers, use mass transit to and from work for a total of 100 unlinked trips
daily. Now, consider the case where 100 new people join the work force and of the 100 new
workers, six percent use mass transit to and from the job. The new employment figure is
1,100 and the new ridership figure is 112 [100 + (6% x 100 workers x 2 trips daily)]. The
employment elasticity of demand (eg) as calculated by the midpoint arc elasticity formula

is shown below to be 1.19.

R, R) | (E,E)

CTRRE | EE2
_ _(112-100) _ (1100-1000)
E (112+100)/2  (1100+1000)/2

£g = 119

(20)

In other words, an employment elasticity greater than one implies that the newly employed
workers utilize mass transit at an only slightly higher rate than the existing workers, which
is reasonable for the 1980s.

Although the effects of reduced employment should impact transit ridership immediately
and therefore no lag structure is expected, employment increases may exhibit a lagged effect
on ridership. The reason for this is that people entering the workforce may not use mass

transit until they become accustomed to their new working schedule and environment. Also,

45 William O'Hare and Milton Morris, Demographic Change and Recent Worktrip Travel Trends,
I, Al.

46 Motor Vehicle Manufacturers Association of the United States, Inc., MV M A Motor Vehicle Facts
& Figures '89, p.45.



28 ' i : Chapter 2

increased employment usually exhibits a slow trickle-down effect on the general economy
and hence on activities, such as shopping, which motivate travel. In brief, with monthly data
no lagged relationship between ridership and decreasing employment is expected, although
the lag cross correlations should be examined when employment is increasing.

Other urban characteristics which affect the transit market are city age, size and
dimensions, urban characteristics and geographic location. Again, these factors should not
change significantly in the short-run and are irrelevant for this fare elasticity analysis.

As stated previously, transit ridership traditionally exhibits strong seasonal variation.
There are three basic causes of this variation: 1) adverse winter weather, 2) summer
vacations, and 3) the number of working days in the month. This seasonality can be handled
two ways within the framework of the transfer function model. First, one may choose to
structurally model the seasonal characteristics by using month length variables, seasonal
dummy variables and weather variables.¥” The major drawback to this method is that the
seasonal variables are geographically diverse. For instance, it would be very time
consuming, but certainly mot impossible, to obtain and input all available monthly
temperature and precipitation data for the United States. The second method is to use the
ARIMA general multiplicative seasonal model and simply add a seasonal multiplicative
component to the error structure of the transfer function model.*®* The approach taken
here is to attempt to model the monthly working day variation along with the other
structural parameters and to also use the seasonal ARIMA model to capture the remaining
seasonal effects. Obviously, the number of working days per month is readily available for
both past and future periods. According to Wang and Skinner, “the rationale for the
inclusion of working-day variation in the model ... [is that the] ... autocorrelation functions

of residuals fail to detect working-day variation omitted from the series and the inclusion

47 K emp, Planning For Fare Changes, p.33.

48 K yte, et al., 1, 26.
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of working-day variables in the model provides us with a direct test on the existence of
working-day variation in the series as well as a procedure for directly estimating it from the
data™® The disadvantage to incorporating working days into the equation is that it is
highly correlated with the service variables and hence its inclusion may lead to multicol-

linearity problems.

The last variable which may be added to the model is the intervention variable, also
known as the structural dummy variable. Interventions are discrete events like strikes, fuel
shortages, special promotional activities, and new laws which have a measurable impact
upon ridership. Two characteristics of the intervention must be specified a priori, its starting
point and the general shape or expected nature of the impact of the intervention. For some
interventions, such as strikes, the starting point and its effect upon ridership are easily
ascertained. Conversely, it may be difficult to determine exactly when a fuel shortage
started, although the general shape of its impact on ridership may be evident from the data.

The intervention variable can take a value of either 0 or 1 at any given observation
point. For example, suppose that a new law is enacted which would make all major arterial
highways HOV-4 (high occupancy vehicles, 4 persons) during rush hours. Many commuters
who previously drove to work on these highways would now have to make arrangements to
travel in a vehicle which was carrying four or more persons. Transit ridership and carpools
should increase. In this case the intervention variable I, would take the value of 0 prior to
the law’s execution and 1 thereafter. This is called a step function, because the intervention
has a permanent step effect upon the level of ridership. Another case involves interventions
of fixed length which do not have lasting effects. Here I, takes the value of 1 during the
event and 0 otherwise. For instance, I, would be 1 during a strike and 0 before and after

the strike. This is referred to as a pulse function.

4 Wang and Skinner, p.33.
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The shape of the intervention can usually be classified among one of the following

general forms:°

1. Abrupt start and the effect of the intervention is of permanent duration.
2. Gradual start and the effect of the intervention is of permanent duration.
3. Abrupt start and the effect of the intervention is of temporary duration.
4. Gradual start and the effect of the intervention is of temporary duration.

Combinations of these four general shapes are also possible. A “no pay” promotion
would increase ridership during the free-ride time period (type 3) and would, hopefully, have
a positive residual effect after the promotion ended (type 1). Besides being a method for
dealing with data perturbations, intervention analysis permits the transit planner to answer
questions like “What was the effect of the two month marketing promotion on my

permanent ridership?”

Identifying and assembling the appropriate proxies is perhaps the most difficult step in
econometric modeling. Table S shows the theoretical variables and the corresponding

measures selected for this study.

Table 5. Structural Variables and Measures Used in Transit Demand Model
e |

VARIABLE ACRONYM MEASURE (PROXY) .

Ridership R Unlinked Passenger Trips

Service Level SL Revenue Vehicle Miles and/or Hours
Transit Cost FC Real Average Fare

Alternate Mode Cost AC Real Local Price of Gasoline

Market Size MC Local Employment

50 vandaele, p.336.
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The Demand Function

Having worked through the mechanics, the actual combination of time-series and
regression analysis methods can now be performed. Restating equation 2 in a form which
allows for lag structures, replacing the general seasonal variable S, with the working day

variable WD, and temporarily omitting the intervention variable I, gives equation 21.

R, = vy + ¥{(B)SL, + Vi(B)FC, + V{(B)AG, + ¥,(B)MC, + ¥{(B)WD, + ¢, (21)

where:
v{(B)SL, = w;oSL, + vy,SLy; + visSL g + ... (22)
v3(B)FC, = vyoFC, + v51FC,.y + VoF G + ... (23)
v§(BJAC, = VgAC, + V5,AC,; + V5, AC, ; + ... (24)
VIB)MC, = VMG, + vgMCyy + VMCyy + . ... (25)
v{(B)YWD, = vgeWD, + v, WD, , + v, WD, ; + ... (26)

In practice, some of the explanatory variables, such as working days, will not have a lag
structure and therefore only the current time period parameter (vg,) will be significant.
Other variables, such as service level and fare, are expected to have significant lag
structures. A problem then arises when attempting to estimate the lag parameters,
Vg Vygs Vigs = a0d Vg, Vay, Vag, .. , Since an infinite number of functionally unrelated
parameters can not be estimated from a finite set of observations. These parameters must
be represented in a parsimonious form whereby the parameters are assumed to be
functionally related. The two most common forms are Almon lags, in which the coefficients
are related by a polynomial function of prespecified degree and duration, and Koyck lags
or decreasing geometric distributed lags, in which an exponential decay function is used.®!
Consider that equation 22 can be rewritten with just two parameters, v, and §, by using a

geometric lag as shown in 27.

51 ¥ emp, Planning For Fare Changes, p.36.
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VI(B)SL, = uy(SL, + 6L, + 6%SL,, + 6%Liy +..) @7
or

V{@B)SL, = o,  &° SL,, (28)

As shown in equation 28, the long-run response in a geometric lag model such as that in
equation 27 is simply the parameter v, times the sum of the lag weights Z6* or, more
appropriately, ,/(1-6,).52 Now the v parameters can be readily represented in a

parsimonious form as demonstrated in equation 29.

vB)SL, = —— SL, @9)
b |

The parameters in the polynomial w, are commonly referred to as the numerator
parameters and in polynomial §, as the denominator parameters.®® Using numerator and
denominator polynomials to represent the lag structures, equation 21 may now be rewritten

as:

R, = 4y + (0,/(1-6,B))SL, + (u,/(1-5,B))FC, + w,AC, + o MC, + 0;WD, + e,  (30)

Equation 30 can be interpreted as saying that there are five factors which influence transit
ridership: service level (SI.;), fares (FC), alternate modes’ costs (AC), market characteristics
(MC) and working days per month (WD) plus an error term, e,. Furthermore, the effects
of service level and fare changes begin immediately and decay over the next several periods,
while alternate modes’ costs, market characteristics and working days affect ridership only

in the current period.

52 Recall that the sum of an infinite series such as £6® = 1 /(1-6). See Pindyck and Rubinfeld,
p.232.

53 vandaele, p.263.
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The last step in the transfer function model is to use time-series analysis to construct
an ARIMA model for the error structure e, as a function of past values and random
disturbances. This ARIMA model will then be substituted for the error term of the original
regression equation. Again, the reason that the transfer function model is superior to a
regression model is that it explains the unexplained variance of the regression equation and
thereby addresses the problems of regression analysis which were outlined previously. Using
the now familiar ARIMA notation, equation 31 proposes the form of this model.

¢(B)#(B)(1-B)!(1-B*)°, = 6(B)e(B)a, (31)

or
4(B)e(B)

#(B)#(B)

In order to complete the transfer function model, the right side of equation 32 is

(1-B)¥(1-B*)P¢, = (32)

substituted into equation 30. To reiterate an important point, the ridership variable will
usually require function transformations and both consecutive and seasonal differencing to
induce stationarity and these same transformations and differencing carry over to the
explanatory variables. After these transformations, the model becomes awkward, so the
convention of using lower case letters to represent the dependent and explanatory variables

after natural log transformation and differencing is introduced here. That is:

r, = (1-B)¥(1-B)’InR, (33)
s, = (1-B)*(1-B")° In SL, (34)
fc, = (1-B))(1-B°)° In FC, (35)
ac, = (1-B)¥1-B*° In AC, (36)
mc, = (1-B)%(1-B*)® In MC, (37)
wd, = (1-B)(1-B*)® In WD, (38)

Finally, equation 39 proposes one possible form of a bus ridership transfer function model.

A W 8(B)e(B
I, = Wy + - sl, +—03-fq+w3ac,+w‘mg+wswd, +(—)-u

1-6,B " 1.5,B #(B)#(B) 39
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It is likely that some of the variables will not be statistically significant and it would not
be unusual to drop or add variables, numerator parameters (w) or denominator parameters
(8) from the model. If needed, the intervention variable can easily be added to the model
as shown in equation 40, where I is the intervention variable, T is the time period at which

the event starts and ¥ is the intervention form.

A W, W, é(B)e(B) N
= —_— I 40
o =G 1-6,B sk + 1-5,B fey ot 109Gy 6 00y s W0y o ¢(B)¢(B) Aiti¥hss wol40)

Strengths of the Transfer Function Model

A comparison of the transfer function model represented in equation 40 with the
regression model represented in equation 2 points out the superiorities of the transfer
function in modeling transit ridership. Recall that one of the most vexing dilemmas of
structural regression models using business data is multicollinearity. The transfer function
solves this problem by relating the differences of the explanatory variables to the differences
of the dependent variable. Differences usually have a much lower correlation coefficient
than the nominal values of the explanatory variables. In fact, regression models sometimes
use the percent change of the explanatory variables as one remedy for multicollinearity.
Percentage changes are essentially changes in logs which are the same as first order
differencing of a log transformation. The drawback to using differenced variables is that
the R? values are generally higher when nominal values are used.®® One strength of the
transfer function model then, is that it provides a structured framework within which

transformations that reduce multicollinearity are performed systematically.

Serial correlation is another regression problem addressed by the transfer function. The
residuals of the transfer function’s structural component will still be serially correlated, but

54 Charles R. Nelson, Applied Time Series Analysis for Managerial Forecasting, p.58.

56 Cy Ulberg, “Short-Term Ridership-Projection Model,” Transportation Research Record, 854,
15.
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this serial correlation is then modeled by the ARIMA component. Of course without serial
correlation the ARIMA component of the transfer function would be ineffective. The
outcome is that serial correlation does not affect the structural model of the transfer

function as severely as the uncorrected regression model.*®

The transfer function also lessens the impact of two types of specification errors which
commonly affect regression models, 1) the absence of lagged relationships, and 2) the
omission of relevant variables. As shown previously, the transfer function includes a
methodology to explicitly investigate lag relationships through the cross correlation function.
Secondly, the trend of the explanatory variables which were omitted from the structural
regression model may be modeled by the ARIMA specification. For example, assume that

the true ridership demand model is given in equation 41.
R, = By + B,SL, + B,FC, + B,AC, + B MC, + BsS, + Bgl, + €, (41)

Now, suppose that the researcher omits alternate modes’ costs (AC,) and instead estimates

equation 42 as the regression model.

R, = By + BiSL, + B,FC, + BMC, + BS, + Bl, + e, 42)

In this incorrectly specified model, the true error term €, may be stated as shown in
equation 43.

€, = BAC, + e, (43)

56 Recall that the regression analysis corrections for serial correlation are very similar to the
autoregressive process of the transfer function model. For example, a AR(1,0,0) time-series model
is equivalent to a regression model that is corrected for first-order serial correlation.
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Assuming that -AC. follows a time-related trend, equation 43 may be rewritten with a

time-series model of the form:
(] B

(1-B)’(1-B")%, = ;((';))";_S(_B_))_ € (44)

Referring back to equation 32, one can see that equation 44 is simply the ARIMA

component of the transfer function model with € equal to the random shock variable a.

This exercise illustrates the primary strength of the transfer function model, namely that the

influence of omitted variables is at least partially accounted for by the time-series analysis.

Since the model may be more fully specified, the coefficient estimates of the transfer

function model will be more efficient than the coefficient estimates of the ordinary

regression model. Likewise, the standard errors of the transfer function model will be less

biased than the standard errors of the regression model.
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Survey and Data Collection Methodology

Economic theory asserts that the demand for a good or service is a function of its own
price, the price of substitute commodities, the behavioral characteristics of the consumer and
some other influential socio-economic factors. Applied to public transportation, the demand
for mass transit may be postulated as being a function of fare, transit services, costs of
driving the automobile, employment and population in the service area, seasonal variations,
and non-periodic events such as work stoppages and marketing promotions. By mathemati-
cally modeling historical correlations, one may estimate the functional relationships between
transit ridership and these explanatory variables. As explained in the preceding chapters,
both ARIMA and OLS methods are used in this study to estimate these transit demand
functions. However, the primary purpose of this study is to measure the systems’ fare
elasticities and the demand functions are only a means by which fare elasticities are

computed.

There are obvious data constraints upon the capacity of any model to simulate the
effects of every factor which might influence transit demand. Therefore, it becomes
necessary to limit the analysis to certain key variables. Also, when data are not available
to directly measure primary explanatory variables, like service quality, the model should
allow for the use of proxies without adverse impacts on the fare elasticity estimates. Below

is a listing of the information needed for the transit demand models proposed in this study.

s Fare Variables

e Date of Last Fare Change
o Base Adult Cash Fare
o Passenger Fare Revenues For Transit Service
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= Service Variables

e Vehicle Revenue Miles
e Vehicle Revenue Hours
e Working Days Per Month

s Other Influential Variables

e Local Employment
e Local Price Deflator
e Local Gasoline Price

» Nature and timing of any extraordinary events which had a significant impact
on ridership (intervention variables)

It is essential that the ridership model Figure 8. Observation Period
be able to capture the lag effects of fare Monthiy Ridership

7 24 montns Berore 24 mMontns ATter

changes, since the consumer’s time-delayed
reaction is a major fare and service policy
consideration. Therefore, the analysis must

(Mt 11 1ons)
LR EEEREREEERER

focus on the smallest measurement unit of

Fare
Change —e

Unlinked Passenger Trips

ridership data readily available, which is the

1900 BBt JuiaBd Bl Jui-03 Jar-B8 Jui-B8 Jen-87

month. The time period of observation was
from 24 months befofe the last fare change to 24 months after the last fare change, for a
total of 48 observations, as shown in Figure 8. This would give a view of the market at
equilibrium for two years before the fare change and would allow enough time for the mar-
ket to settle during the 24 months after the fare change. It would also supply the minimum
number of observations required by the Box-Jenkins techniques. In practice, certain modifi-
cations in the observation period were necessary as very recent fare changes did not have
enough observations to conduct the statistical analysis and very old fare changes would not

reflect current market conditions.
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The data used in this study were obtained from three sources: 1) publications and
internal documents of the American Public Transit Association, 2) government and trade
periodicals, and 3) information from a special survey which was sent to 189 transit systems
in the United States and Canada in May 1988. The date of the system’s last fare change
was the cardinal determinant of whether the transit system was surveyed. Systems which
experienced their last base adult cash fare change before 1982 or after October 1987 were
excluded. In the first case, elasticities estimated from fare changes which occurred during
the oil embargoes and gasoline price increases of the late 1970s and early 1980s would
probably be irrelevant to passenger behavior in the late 1980s, an oil glut period. In the
second case, the remaining time from the fare change until May 1988, which was the survey
mailing date, was too brief to affirm that the market had reached its long-run equilibrium
state. Once the candidate systems were established, the Base Adult Cash Fare was collected

from Transit Fare Summary® for the relevant time period.

The selected transit systems were sent the Fare Impact Survey,®’ which requested
monthly data for Unlinked Passenger Trips, Vehicle Revenue Miles, Vehicle Revenue Hours
and Passenger Fare Revenues For Transit Service during both peak hours and all operating
hours for 24 months before and after the system’s last fare change. Off-peak data were
calculated by subtracting the peak values from the all-hours values.

Since the 48 month period of observation of each transit system varied by the date of
their last fare change, each survey had to be customized, via computer program, with the
system’s name, the correct reporting dates and base adult cash fare. As each transit system
returned its survey, the data was compiled and computerized. The response to the survey
is given in Table 6. The response rate is good, considering that the survey was extensive and

that the completion and return of the survey was entirely voluntary.

56 American Public Transit Association, various editions.

57 See Appendix B for a sample copy of the Fare Impact Survey.
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Table 6. Response of Transit Systems to the Fare Impact Survey
[ e

Total number of surveys sent 189
Total number of surveys returned 79
Total response rate 42%
Total number of unuseable surveys returned 27
Total number of useable surveys returned 52
Total useable response rate 28%

Where possible, the reported monthly Unlinked Passenger Trips, Revenue Vehicle
Miles and Revenue Vehicle Hours were checked for accuracy by comparing the fiscal year
totals to data published in Transit Operating and Financial Statistics.®® If the inconsistency
could not be resolved, the offending variable was not used in the analysis. Passenger Fare
Revenues For Transit Service was checked against the average fare, which is calculated by
dividing Passenger Fare Revenues by Unlinked Passenger Trips. The average fare is
generally slightly less than the base adult cash fare and it should exhibit monthly variation.
In one case the average fare did not vary, but instead took a constant value. As a fare
analysis can not be conducted without a fare variable, this system was omitted from the
study. Peak Period Passenger Fare Revenues For Transit Service was checked to ensure
that the data was not a constant ratio of the total data. If this was the case, a peak period
analysis was not performed since the peak period fare elasticity would be identical to the

all-hours fare elasticity.

The last three items, Local Employment, Local Price Deflator and Local Gasoline Price
were assembled from the periodical literature. Monthly local employment was taken from
Employment and Earnings.®® The Consumer Price Index (CPI-U) of the transit system’s

88 American Public Transit Association, various annual editions.

89 U.S. Department of Labor, Bureau of Statistics, Employment and Earnings, various monthly
issues, Table B-8: Employees on nonagricultural payrolls in the States and selected areas by major
industry.
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headquarters city was used as the Local Price Deflator to deflate the monetary variables.*
That is, the CPI was used to express fare and gasoline price in constant dollars so that the
effects of inflation on the changes in these variables was discounted. The last variable,
Local Gasoline Price, was gathered from the weekly periodical Oil and Gas Journal.** The

mid-month data was used to approximate the average monthly gasoline price.

The problems with the CPL, employment and gasoline price variables centered around
the fact that not all localities were represented in the data bases of the information sources.
As a solution, when local data was unavailable, regional data was used. For instance, the
CPI of the West Region - city population of 75,000 to 385,000 was used as the Local Price
Deflator for Spokane, Washington. When regional data was not available, the data for a
similar city was used. For example, the Buffalo, New York gasoline price was used as the
Local Gasoline Price for Albany, New York. Finally, when neither regional nor comparable
data was available, the national average was used. The net effect of these substitutions was
minimal since the tranfer function methodology used differences, instead of the actual

values.

The data was entered on an IBM PC type microcomputer using the LOTUS 1-2-3
spreadsheet software. The elasticity estimations and analyses were then performed with
RATS (Regression Analysis of Time Series), a time series analysis and forecasting

program.5?

8 yus. Department of Labor, Bureau of Labor Statistics, CPI Detailed Report, various monthly
issues, Table 11: Consumer Price Index for All Urban Consumers: Selected areas, all items index.

1 0il and Gas Journal, various weekly issues with middle-month prices, Table: Gasoline Prices,
Approximate prices for self-serve unleaded gasoline, Pump price.

62 RATS is available from VAR Econometrics, Inc., 1800 Sherman Ave. Suite 612, Evanston,
Illinois 60201, telephone (312) 864-8772.
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Model Application Resuits

The ARIMA model specified in Chapter 2 was applied to data from 52 transit systems
to estimate the demand functions for fixed-route bus transportation in various cities
throughout the United States. The results are presented in Table 7, Bus Ridership Model
Results.

In general the economic behavior of the transit riders is well predicted by the model.
The corrected coefficient of determination (R?) ranges from 0.51 to 0.97, denoting that more
than 50 percent and up to 97 percent of the fluctuation in transit ridership is explained by
the model. Twenty-five cases have a R? of 0.80 or higher, and for seven cases, the model

is able to explain more than 90 percent of the ridership variations.
All coefficients have a priori expected signs and are statistically significant at the 90 to
99 percent confidence level in most cases. Coefficients of the fare variable are within the

expected range and the lag structures are commonly accepted.

The definitions of the headings and contents of Table 7 are shown below.

LOCATION  The major city in the transit system’s service area. Note that the
transit systems are listed alphabetically by location.

CONSTANT The point where the ridership demand function intercepts the Y
axis. '

FARE The regression coefficient of the passenger cost variable (FC). In

this study, the real average fare was used to approximate FC. Also
note that for all variables monthly lags are shown in square
brackets to the right of the coefficient and the z-statistics are shown
in parentheses directly under the coefficient.

SERVICE The coefficient of the variable used to measure level of bus service
at the transit system (SL). Depending on the form of the equation,
either revenue vehicle miles (VM), revenue vehicle hours (VH) or
working days (WD) per month was used as the service level proxy.
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The coefficient of the market size variable (MC). The monthly
employment figure for the major city in the transit’s systems service
area as defined by the U.S. Department of Labor was used.

The coefficient of the alternate mode costs variable (AC). The
real (deflated) pump price of major brand, self-service, unleaded
gasoline in the area of the transit system’s location was used as the
alternate mode costs proxy.

The coefficient of the binary (0 or 1) variable (I), which is used to
account for the effects of certain exceptional, non-periodic incidents
which have impacted bus ridership at the system. These events
include strikes, free fare promotions, extreme weather and the like.

For transfer function equations, these are the parameters of the
ARIMA model used to explain the residual series of the structural
regression. The coefficients of the moving average process is
shown as MA, ; where ¢ is the current month and i is the number
of months that the moving average polynomial was lagged.
Similarly, the coefficient of the autoregressive process is specified
as AR, ; where i is the number of months that the autoregressive
polynomial as lagged. When OLS was used, RHO signifies the
coefficient of the first-order autocorrelation correction.

This is the adjusted or corrected coefficient of determination. R?2
is a measure of the “goodness of fit” of the equation, adjusted for
the number of degrees of freedom. The higher R? is, the higher is
the degree of overall fit of the estimated regression equation to the
data. However, R? is only one of a number of factors that should
be considered when evaluating the equation.

This is value of the Durbin-Watson test which involves the
calculation of a test statistic based on the residuals from the
regression. The DW statistic will lie in the 0 to 4 range, with a
value near 2 indicating no first-order serial correlation.

This is the calendar range over which the actual regression was
performed. Whenever possible, the experiment was conducted
from 24 months preceding the fare change to 24 months after the
fare change.
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Calculation of Fare Elasticities

The goal of this study was to determine the industry-wide response of bus patrons to
fare increases. The demand equations are merely the tool which permits this measurement.
Since all of the equations are in the double log form, that is both the dependent and
independent variables have a natural logarithmic transformation, for most equations the fare
coefficient itself is the elasticity value. However, with the transfer function model there are
several cases which need special consideration. First is the presence of lagged numerator
parameters in the fare variable. In this case, the long-run fare elasticity is calculated by the
summation of the current and lagged fare coefficients. The second is the presence of lagged
denominator parameters. Here, the long-run fare elasticity is calculated by dividing the

current numerator coefficient by one minus the denominator coefficient.

The generalized fare elasticities presented in this study are subject to certain
unavoidable limitations which necessitates their judicious use. Some special qualifications

are outlined below.

s The elasticities are based on system-wide bus ridership. Therefore, their application

to any particular bus route or type of service is debateable.

s The fare structure was assumed to have remained constant. Comprehensive changes
in the gross fare structure, for example the introduction of tokens, calls for a re-

examination of the elasticity.

s The focus of this study is to estimate fare elasticities. While the estimated transit
demand functions provide a set of coefficients which may allow the derivation of
elasticities of the service, employment, gas price and intervention variables, the
formulation of these other elasticities was not the aim of this research. .They are
merely a by-product of it. The coefficients are statistically significant and of the proper
signs and magnitudes, but their proper use requires further investigation.
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Fare Elasticity Findings
This study attempts to answer the following questions:

= What are the effects of fare changes on bus ridership?

= Have there been any changes in the fare elasticity levels since the completion of the
Simpson-Curtin study some 40 years ago?

s Is the demand for bus transit less responsive to fare changes during peak travel

periods?
s Do fare elasticities differ between large and small cities?

s Do the initial base fare levels have on influence on a transit system’s fare elasticity

level?

The findings on fare elasticities of bus service for fifty-two transit systems under study
are presented in Table 8 (all day average) and Table 9 (peak off-peak differential). Briefly,

the results are as follows:

= The fare elasticity for all systems averages at -0.40, notably higher than the Simpson-
Curtin formula of -0.33 which has been widely used by transit managers.

® The elasticity levels of individual transit systems, however, vary widely, from -0.12 for
Riverside, Calif. to -0.85 for Toledo, Ohio. The local population work places,
income, driving conditions, transit services, parking costs, etc., cause different levels
of sensitivity of travellers to fare changes. In any event, the large variation clearly

illustrates the danger of applying the Simpson-Curtin rule to all areas.
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Table 8. Transit Fare Elasticity Estimates of 52 Transit Systems
—

URBAN AREA FARE FARE ELAST
cIvY POPULATION ELASTICITY t-STAT R SOUARED GROUP MEANS
BUS SERVICES IN URBANIZED AREAS WITH MORE THAN 1 MILLION POPULATION
1 Los Angeles, CA 9,479,436 -0.231 5.83 0.87
2 Des Plaines, IL 6,779,799 <0.117 1.75 0.73
3 Detroit, MI 3,809,327 -0.247 3.18 0.92
& San Francisco, CA 3,190,608 -0.151 2.28 0.88
S Alexandria, VA 2,763,105 -0.412 2.29 0.9
6 Dallaes, TX 2,451,390 -0.134 1.77 0.9
7 Baltimore, W 1,755,677 -0.495 3.40 0.78
8 San Diego, CA 1,704,352 -0.270 1.85 0.66
9 Ocesnside, CA 1,704,352 -0.350 2.6h 0.68
10 Atlants, GA 1,613,357 -0.277 2.7 0.51
11 Phoenix, A2 1,409,279  -0.321 1.86 0.66 -0.361
12 Seattle, WA 1,391,535 -0.266 2.35 0.86 €0.154)*
13 Everett, WA 1,391,535 -0.429 1.8 0.51
14 Denver, CO 1,352,070 -0.562 20.60 0.92
15 San Jose, CA 1,243,952 -0.460 2.17 0.52
16 Cincinnati, Ol 1,123,412 -0.738 1.98 0.80
17 Kenses City, MO 1,097,793 -0.511 4.32 0.92
18 Gretna, LA 1,078,299 -0.354 3.10 0.77
19 Portland, OR 1,026,144 -0.387 4.30 0.64
20 B8uffalo, NY 1,002,285 -0.503 3.27 0.84
BUS SERVICES IN URBANIZED AREAS WITH LESS THAN 1 MILLION POPULATION
21 Sacramento, CA 796,266 -0.162 7.58 0.8
22 Riverside, CA 705,175 -0.119 3.96 0.76
23 MHonolulu, HI 582,463 -0.652 5.99 0.80
26 St. Petersburg, FL 520,912 -0.478 3.19 0.74
25 Nashville, ™™ 518,325 -0.527 3.25 0.82
26 Richmond, VA 491,627 -0.624 2.43 0.70
27 Albeny, NY 490,015 -0.456 3.42 0.57
28 West Palm Beach, FL 487,044 -0.605 2.92 0.86
29 Toledo, OM 485,440 -0.855 29.54 0.97
30 El Paso, TX 454,159 -0.29% 2.54 0.50
31 Tacoma, WA 402,077 -0.432 4.70 0.63
32 Allentown, PA 381,734 -0.747 2.60 0.70
33 Grand Rapids, Ml 374,744 -0.430 6.89 0.84
3, Flint, MI 331,931 -0.585 2.98 0.87
35 Fresno, CA 331,551 -0.311 4.99 0.74
36 Serasota, FL 305,431 -0.214 2.67 0.68
37 Chattancoga, TN 301,515  -0.341 4.75 0.88 -0.430
38 Sspokane, WA 266,709 -0.527 3.1% 0.69 €0.189)*
39 Fort Wayne, IN 236,479 -0.116 1.7 0.90
40 South Bend, IN 226,331 -0.261 4.58 0.66
41 Meadison, Wl 213,675 -0.401 2.3 0.83
42 Eugene, OR 182,495 -0.184 1.89 0.84
43 Lincoln, NE 173,550 -0.500 3.26 0.55
44 South Daytona, FL 170,749 =0.423 2.88 0.61
45 Binghamton, NY 161,132 -0.704 10.95 0.93
46 Lancaster, PA 157,385 -0.428 2.9 0.7%
47 Appleton, W1 162,151 -0.255 2.86 0.61
48 Springfield, MO 139,030 -0.481 8.57 0.65
49 uilliamsport, PA 58,650 -0.299 2.52 0.75
50 Oshkosh, Wl 52,958 -0.167 3.09 0.86
S1 State College, PA 51,298 -0.642 4.57 0.89
52 Boone, NC Non-UZA -0.528 5.66 0.81
ALL SYSTEMS: -0.403
€0.179)*
* - Standard Deviation
Source: American Public Transit Association
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Table 9. Fare Elasticﬂy: Peak and Off-Peak Travel

off
Urbanized Area Peak Peak Popuiation
Spokane, WA 0.32 .73 266,709
Grand Rapids, Ml 0.29 -0.49 374,744
Sacramento, CA' 0.22 0.14 796,266
GROUP | AVERAGE? 0.27 [0.04]) -0.45 [0.30) 1 million and less
Portland, OR/WA 0.20 0.58 1,026,144
San Francisco, CA® 0.14 0.31 3,190,698
Los Angeles, CA 0.21 0.29 9,479,436
GROUP Il AVERAGE? 0.18 [0.04] -0.39 [0.16] 1 million and more
ALL SYSTEMS AVERAGE? 0.23 [0.06) -0.42 [0.22]
Notes: 1. Light rail initimot_'l March 1987, which was during the observation period.
2. The standard deviations of the group and total means are contained in square brackets.
3. Transit system serves Marin and Sonoma counties.

= As a group, the average fare elasticity for large cities with more than 1 million popu-
lation is -0.36, significantly less (in absolute value) than the elasticity of -0.43
estimated for smaller cities. This indicates that transit users in small cities and rural

areas are more sensitive to fare increases.®

Analysis of the elasticity differentials between peak and off-peak travel are constrained
by the limited number of observations: only six transit systems were able to provide
peak/off-peak data for the study. Nevertheless, certain patterns clearly emerged, as follows:

63 Attempts to identify a continuous functional relationship between fare elasticities city sizes and
other relevant factors were unsuccessful.
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» The average fare elasticity during off-peak hours is -0.42, about twice as high as that
during 'peak hours of value of -0.23.% This relationship holds true for both
population groups. For cities with more than one million population, the average
peak-hour elasticity is -0.18, comparing to the off peak elasticity of -0.39. For smaller
cities and rural areas, the numbers are -0.27 and -0.46, for peak and off-peak hours,

respectively.

Implications of the Effects of Fare Changes on Bus Ridership and Fare Revenues

For a very small change in fare, fare elasticity measures the ridership shrinkage ratio.
In other words, fare elasticity of -0.40 implies a shrinkage ratio of -0.40, or a one percent

increase in fare would result in a 0.4 percent decrease (shrinkage) in bus ridership.

However, for larger fare increases, the elasticity and shrinkage levels usually do not
coincide. The following formula is used to estimate the new ridership levels as a result of
larger fare increases:®®

R, = exp[c x m[.’.rz]+ m(R,)] (45)
Fl
where ¢ : fare elasticity
R,, F, : the new ridership and fare levels
R,, F; : the existing ridership and fare levels
exp : the exponential function
In : the natural logarithmic function

64 patrick Mayworm et al. in Patronage Impacts of Changes in Transit Fares and Services, page
85, surveyed existing studies and arrived at the adjustment factors of 0.59 for all-hour to peak
conversion and 1.38 for all hour to of f-peak conversion. Using these factors, our peak and off-peak
elasticities would be -0.24 and -0.55, respectively.

65 See Chapter 5 for more detailed explanations.
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For a fare elasticity of -0.4, the effects of fare increases on ridership and total fare

revenues are shown in Table 10.%¢

Table 10.
Etfects of Fare Increases on Ridership and Revenues at Fare Elasticity = -0.40
—

Fare Increase Ridership Loss Revenue Increase
10% 3.7% 5.9%
20% 7.0% 11.6%
30% 10.0% 17.0%
40% 12.6% 22.4%
50% 15.0% 27.5%

66 Assuming that the fare structures and all other influential factors remain unchanged.






~ CHAPTER 4
USE OF TRANSFER FUNCTIONHMODEL BY TRANSIT SYSTEMS

This report provides estimates of the general demand functions and fare elasticities of
various American transit systems and the national averages. Frequently, transit analysts are
required to estimate and update the demand functions for their specific transit systems, and
to analyze the expected impacts of fare changes on specific bus or rail routes. The transfer
function model can be a valuable tool in accomplishing these objectives. This chapter will

briefly provide some guidance and advice concerning the use of this model.

Transfer Function Estimation

The estimation of the transfer function model is only slightly more complicated than the
estimation of a regression model. Of course, a computer with an appropriate time-series
statistical software package is needed.*” A step-by-step application of the methodology
used to estimate the fare elasticities presented in this paper is given below. The reader
should understand that a full and complete explanation of the transfer function model is not

possible here and is, therefore, urged to refer to other sources.

STEP 1. Specify the Theoretical Explanatory Structure of the Model. This most
important step entails specifying the variables to be included as regressors, the
signs and approximate magnitudes of the coefficients, and the measurement
or proxy for each variable. The selection of variables should be basedlon the
economic concepts of causality, complementarity and substitution. The
hypotheses and results offered in this paper and in other studies may provide
some guidance regarding which variables are the major determinants of

ridership. The researcher should be well-enough acquainted with the

67 A review of statistical software for IBM-standard microcomputers is Robin Raskin, “Statistical
Software for the PC: Testing for Significance,” PC Magazine, Volume 8 Number 5 (March 14, 1989),
94-310.
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STEP 2.

STEP 3.

Chapter 4

economic, statistical and data requirements and limitations of transit analysis
in order to determine the interrelationships among the independent variables,
which proxies are the best measurements of the theoretically desired variables,
and what priors can be imposed. Also, the researcher should be familiar with
the qualitative information so as to detect the effects of any anomalies such
as work stoppages, the opening of mew highways or rail lines or special
marketing promotions on the ridership series. Regarding time series analysis,
the selection of explanatory variables generally is limited to those variables
for which four or more years of comparable monthly or quarterly data is
available, since the Box-Jenkins method requires at least 40 to 50 obser-
vations.®®*  Properly executed, this first step will alleviate many of the
problems encountered in econometric analysis. However, the researcher must
understand that theory development is an on-going process and that the initial

hypothesis will be revised throughout the experiment.

Collect and compile time series data for the dependent and independent
variables which will be used in the analysis. Monthly transit data such as
ridership, revenues and vehicle miles and hours usually must be obtained
directly from the transit system’s internal records. Economic data such as
employment, population and income can be obtained from government
publications. Some of this data is computerized already and these databases
are available for a small fee. Other data, such as gasoline price, may be
reported in trade journals and other types of periodical literature. The data
should be thoroughly checked for accuracy.

Plot the ridership series and its autocorrelations and examine these plots for

transformation, differencing and seasonality. Ridership will be non-stationary

Scw.l. Granger and Paul Newbold, Forecasting Economic Time Series.
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STEP 4.

and must be converted into a stationary time series. Ridership will most
likely become stationary after performing the log transformation and taking
the first and twelfth differences. A graphical representation of this procedure
is shown in Figure 9a-Figure 9h. First, the raw data is graphed, as shown in
Figure 9a. Notice that the ridership series exhibits both consecutive and
seasonal trends. In Figure 9g one can see that both trends have been
removed by the natural 1og transformation and the differencings. Usually, a
plot of the transformed data is sufficient to determine if the trend has been
removed and a plot of the sample autocorrelations will show whether the lag
correlations are invariant with respect to time. Figure 9h shows the sample
autocorrelation function of the stationary series. Note that the autocor-
relations (p,) of a stationary series will die out quickly as the lag k increases.
Although high autocorrelations at very low lags are not evidence of non-
stationarity,*® pay particular attention to peaks or troughs at regular intervals,
as shown in Figure 9f, as they indicate seasonality and, therefore, the need for
seasonal differencing. Occasionally second consecutive differencing is needed;
however, superfluous differencing of a stationary series will only generate
another stationary series with an altered, negative autocorrelation pattern.
Obviously this is to be avoided as it merely serves to unnecessarily complicate
the model.”™

Calculate and plot the cross correlations of the ridership series and the
proposed explanatory variables. Examination of these plots, along with the
economic theory advanced in Step 1, will help identify the explanatory
variables and the orders of their numerator and denominator parameters in
the structural component of the transfer function model. As shown in

. Vandaele, p.66.

70 Nelson, p.76.
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Figure 9b. Sample Autocorrelation Function
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Figure 10a. Sample Cross Correlation Analysis
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Figure 10b. Sample Cross Correlation Analysis (continued)
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Figure 10a and Figure 10b, one should closely examine those observations
whose cross correlations lie outside of the 95 percent large sample confidence
interval.™ The patterns found in the cross correlation plots are extremely
helpful in identifying the dead time constant, which is equal to the lag of the
first significant cross correlation, the denominator order (if any), which
corresponds to the pattern of an AR(r) model and the numerator order, which
is either the number of periods that the AR(r) pattern is delayed or, if there
is no AR pattern, it corresponds to the order of the numerator parameters.™

STEP S. Identify and estimate the structural component of the transfer function.
Estimate the theoretically most viable structural model, which usually will
contain service (SL), fare (FC), alternate mode costs (AC) and market
characteristic (MC) variables. Include a lag structure sufficient to cover all
lags suggested by economic theory and the cross correlation analysis.
Re-estimate the equation, keeping only those variables and lags whose
t-statistics are significant and whose coefficients are of the correct sign and
magnitude. It is likely that alternate specifications, which the researcher may

also wish to explore, will arise.

STEP 6. Perform diagnostic checking on the equation. Check each variable for its
effect on the signs and magnitudes of the other coefficients, the standard error
of the estimate (SEE), the corrected coefficient of determination, R? and the
covariance/correlation matrix (multicollinearity check). Remember that the

constant should not be suppressed simply because of a low r-statistic.” In

" in Figure 10a and Figure 10b, this confidence interval is represented by parentheses and is
calculated by: 1.96 x SE[r,y(k)] = 1.96 x 1/¥nh where n is the number of observations.

72 See Vandaele, p.279.

73 Cassidy, p.148-149.
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building a transfer function model, it is very important to make sure that all
factors explaining the dependent variable are represented in the model
whenever possible. If the equation is not acceptable at this point, then return
to Step 2 as additional explanatory variables are needed.

STEP 7. Analyze the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of the residuals a, to determine the type of ARIMA model
required. A good technique is to plot both the ACF and the PACF and
compare them with plots of known AR and MA functions. Our research
indicates that the MA(1) x SMA(1) model provides a good fit for transit
ridership.

STEP 8. Estimate the transfer function with the ARIMA component and plot and
analyze the new residuals. The model is acceptable if the g, residuals behave
as white noise. In general, these conditions should be satisfied:

s The residual plot should show no Systematic variation. In particular,
a distinctive sequence of residuals is evidence that the noise model is
inadequate.

s The residual autocorrelation function must show that the residuals are
independent. The residual autocorrelation coefficients should lie
within two standard errors, however a single point outside of this area
is usually not evidence of autocorrelation.

‘s The Q statistic should show that the autocorrelation coefficients as a
group are independently distributed. The Q statistic is approximately
distributed as x* with K-p-q degrees of freedom, where K is the
number of autocorrelations in the sample and p and q are the
respective orders of the AR and MA processes.™

™ «Note the this chi-square test is a ‘ weak’ hypothesis test. A value of Q below the 90 percent
point on the chi-square distribution indicates that it is not necessary to accept the hypothesis that the
residuals are non-white, since the probability that the hypothesis is true is less than 90 percent.”
From Robert Pindyck and Daniel L. Rubinfeld, Econometric Models & Economic Forecasts, p.550.
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s The cross correlation functions between the explanatory variables and
the residuals should show that the residuals are independent of each
explanatory variable. The values of the individual cross correlations
should lie within two standard errors. Again, one should be particular-
ly wary of pronounced patterns.

If all the above conditions are met, then the model can be assumed to be in its final form.

As with all econometric techniques, the researcher should not assume that the transfer
function model can be applied in a cookbook fashion. The reader is cautioned that the
above algorithm is merely meant to serve as a guide to modeling transit ridership and that

each situation will be unique in some way.

Fare Elasticity, Bus Ridership and Fare Revenues

A demand model always should be used to forecast ridership and revenue, but there are
situations which necessitate a “rough and ready” approximation of patron reaction to fare
change. Also, smaller transit properties may lack the means to build even a simple demand
model. In these circumstances the fare elasticities presented here may serve as a guide to

ridership forecasting.

There are four principal fare elasticity measures, point elasticity, shrinkage ratio,
midpoint™ elasticity and constant arc elasticity. The formulas for each are defined in

equations 46-49 where F is fare and R is bus ridership.

. . . R F
Point elast = = e — 46
oint elasticity = €, F " R (46)
Shrinkage ratio =¢,, = AR . F _ 8R/R (47)
AF R FJF

5 Midpoint elasticity is sometimes referred to as arc elasticity.
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AR | Fy+F, - (R, -R,)(F,+F))

Midpoint elasticity = €_., = (48)
PO Y = tmia = TF R, R, RR)(F,F,)
InR, - InR, -
Constant arc elasticity = ¢ = -2 1 (49)

InF, - InF,

Mayworm and Lago™ have shown that for fare changes less than 10 percent each
formula yields about the same elasticity. However for measuring average elasticity at
discrete values and over an extended range, the midpoint or constant arc formulas are the
appropriate analytical tools. The general form of the demand functions estimated previously
was that of a convex curve with a constant elasticity at all relevant points along the curve,
therefore the constant arc formula is used here. Equation 49 can be algebraically
manipulated to solve for new ridership, R, as shown in equation 50.

R, = exp (¢, x(InF, - InF,) + InR)) (50)
It appears that equation 50 permits one to forecast ridership rather simply and with just

four variables, existing fare, new fare, existing ridership and fare elasticity, but remember

that the definition of fare elasticity includes the qualifier “assuming all other variables in the

demand function remain constant.”

Table 11 and Table 12 were developed to help the transit planner apply the concepts

advanced above. Both tables are based on the solution of equation SO at several assumed
fare increases and elasticities. Table 11 presents the estimated ridership loss and Table 12
presents the estimated revenue gain. The tables are self explanatory. For instance, assume
that a transit system’s estimated fare elasticity is -0.30 and the proposed fare increase is 50

76 Patronage Impacts of Changes in Transit Fares and Services, pp.4-8.
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Table 11. Ridership Loss at Several Assumed Fare Changes and Elasticities

Elast 10% 20% 30% 40% 50% 60%
0.10 0.9% 1.8% 2.6% 3.3% 4.0% 4.6%
0.20 1.9% 3.6% 5.1% 6.5% 7.8% 9.0%
0.30 2.8% 5.3% 7.6% 9.6% 11.5% 13.2%
033 | 3.1% 5.8% 8.3% 10.5% 12.5% 14.4%
0.40 "ﬁ 3.7% 7.0% 10.0% 12.6% 15.0% 17.1%
0.50 4.7% 8.7% 12.3% 15.5% 18.4% 20.9%
060 | 5.6% 10.4% 14.6% 18.3% 21.6% 24.6%

Table 12. Fare Revenue Gain at Several Assumed Fare Changes and Elasticities

-0.10 9.0% 17.8% 26.6% 35.4% 44.0% 52.7%
0.20 7.9% 15.7% 23.4% 30.9% 38.3% 45.6%
-0.30 6.9% 13.6% 20.2% 26.6% 32.8% 39.0%
-0.33 6.6% 13.0% 19.2% 25.3% 31.2% 37.0%
-0.40 5.9% 11.6% 17.0% 22.4% 27.5% 32.6%
-0.50 4.9% 9.5% 14.0% 18.3% 22.5% 26.5%
<0.60 3.9% 7.6% 11.1% 14.4% 17.6% 20.7%

percent. Table 11 shows that ridership is expected to decrease 11.5 percent and fare

revenues are expected to increase 32.8 percent. Notice that the all-hour average bus fare

elasticity proposed earlier in this study, -0.40 is shaded.






APPENDIX A
REVIEW OF SELECTED FARE ELASTICITY STUDIES

1. Curtin, John F. “Effect of Fares on Transit Riding,” Highway Research Record, 213
(1968), 8-20.

This is the most often quoted source of mass transit fare elasticities by one of the
originators of the well-known Simpson and Curtin formula. To calculate fare elasticities,
Curtin regressed percent net loss in passenger traffic against percent fare increase for 77 bus

fare increases occuring over a 20 year period from 1947 to 1968. The result of these

regressions is the following formula:

(% net loss in passenger traffic) = 0.80 + 0.30 x (% fare increase)

The equation shown above is known as the Simpson and Curtin formula. Although the
data spanned a two decade period, the Simpson-Curtin study is a cross-sectional analysis,
not a time series analysis. That is, the analysis was performed using data from a cross
section of transit systems at different points in time over a twenty year period. Curtin does
not explain what procedure, if any, he used to standardize the data to account for the time
differences. Judging from this article only, Curtin did not attempt to deflate the fares, so

estimates using the Simpson-Curtin formula should be performed in nominal dollars.

Besides quantifying a relationship between fare increases and ridership decreases,
Curtin addressed two other very important points in this article. First, the absolute value
of fare elasticity should approach unitary elasticity as fares increase past a certain level.
Curtin states: “It is not until the minimum or basic fare level reaches 30 to 35 cents that
diminishing returns may offset the revenue yield.””” This threshold fare level is obviously
in nominal dollars of the time (circa 1968) and, if it does in fact exist, defines the point

where a fare increase would result in a decrease in total revenue.

7p.14.
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Secondly, Curtin realizes that service variables are also very important determinants

of ridership. He states:

There was an additional element to be considered in predicting the impact
of fare changes on the BARTD and Muni rapid transit systems. For those
particular facilities, a lower shrinkage loss was anticipated because of the
superior quality of service and passenger amenities represented in rapid
transit compared to existing forms of transit in the Bay Area. Patrons will be
required to pay more than they do now, but they will be getting a faster and
more comfortable journey in more attractive vehicles. While an increase in
fares for rapid transit journeys above existing surface fares can be expected
to have some effect on riding, it will be less that the passenger loss which
would result from a higher fare on existing routes and service. In calculating
the impact of a rate increase from the existing surface transit fare to a
proposed higher rapid transit fare, therefore, a loss ratio of 0.10 was
applied.™

In his actual ridership predictions, Curtin subjectively reduced the “Simpson-Curtin rule
calculated” loss ratio by half in order to account for service variables. Curtin admits that
the Simpson and Curtin formula does not directly address service factors and therefore the
formula should be applied judiciously because of this shortcoming.

There is also a mathematical problem which develops when the Simpson and Curtin
rule is applied to large fare increases. For example, suppose that a system increases its fares
from $0.25 to $1.00, which is an admittedly large fare increase, but not completely
unreasonable. The calculation of the Simpson and Curtin formula is: -

(% net loss in passenger traffic) = 0.80 + 0.30 x (% fare increase)
(% net loss in passenger traffic) = 0.80 + 0.30 x ((1.00-0.25)/0.25 x 100)

(% net loss in passenger traffic) = 90.80

8p.14,
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Obviously, a 90.80 percent loss in passenger traffic is impossible, if only because the captive
ridership will remain in the system. The missing determinant of ridership loss here is the
$1.00 fare in relation to the cost of alternate transportation modes. The point is that the
Simpson and Curtin formula, like all fare elasticity meésures, will provide erroneous results

when used indiscriminately.

Lastly, there is some written evidence that a fare elasticity value identical to Simpson
and Curtin’s results had been in use since the beginning of the twentieth century. A search
of the American Public Transportation Association’s library files uncovered this memo:

So-called Simpson formula assumes an overall average loss of three tenths of

one percent in traffic for each one percent increase in average fare. It was not

developed originally by Hawley Simpson as a formula but came out of certain data

in a fare case in which he testified. However, similar formula of thumb was used
in the in industry as early as 1917.”

2. Simmons, P.N,, “No Quadratic Equations or Integral Calculus Required,” Mass
Transportation, May 1948.

P.N. Simmons attempts to quantify the relationship between fares and ridership by
plotting passengers per vehicle mile against average fare using data collected from transit
companies operating in the year 1946. Simmons then charted analogues of percent increase
in average fare versus percent decrease in revenue passengers for six, seven, eight and nine
cent fares and the weighted average of all fares, which was about 7.2 cents. These
analogues permitted estimations of ridership loss if fares were raised. For instance,
Simmons’ analogues predicted a 15 percent ridership loss if fares are raised from six to
seven cents. Using the shrinkage ratio calculation, this computes into a elasticity of -0.9,
which is a very large fare elasticity value. Simmons points out that his elasticities are rather

high and his subsequent analysis brings out an important point: the effect of fare increase

" American Transit Association, internal memorandum, October 4, 1954.
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on ridership depends on the size of the original fare in relation to the new fare. For
example, Simmons’ analogues predict a 15 percent ridership decrease for a six to seven cent
increase and only a 5 percent ridership decrease for a nine to ten cent fare increase. The
paper implies that fare elasticity varies depending upon the position on the demand curve

that the market is at when the fare increase occurs.

3. Boyle, Daniel K. Are Transit Riders Becoming Less Sensitive to Fare Increases?.
Washington: Transportation Research Board 64th Annual Meeting, January 1985.

In this paper, Boyle calculates fare elasticities from monthly fare and ridership data
during the years 1979 to 1982. He then classifies these elasticities according to geographic
region, SMSA size, year, original fare level, mode, fare increases and fare reductions. Boyle
attempts to correct for the effects of seasonal and yearly trends by comparing the ridership
of the month after the fare change with the ridership of the same month in the preceding
year. He also calculates long term fare elasticities by comparing ridership levels in the sixth
month following the fare change with the same month in the preceding year. Boyle’s

conclusions are:

While increasing fares may have had little apparent impact on ridership
in the energy conscious years of 1979 and 1980, this appears to have been only
a temporary, and perhaps illusory, phenomenon.

A second interesting point concerns the concept of a fare threshold. This
concept postulates that, as fare rises beyond a certain threshold level,
ridership behavior changes significantly. .. Elasticities are increasingly
negative at higher levels of the original fare up to the “over 60 cent” category.
In this category, ridership response becomes less elastic than in the “51 cent
to 60 cent” category. The explanation driving this version would be that by
the time a relatively high fare level is reached, most of the “choice” riders
have already abandoned transit for another mode, and so further increases
have less impact on ridership. While the data in Table 1 does not provide a
conclusive proof that a fare threshold of this nature actually exists, further
research into this concept would be useful.
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The conclusion that the Simpson and Curtin formula for measuring
ridership response to fare changes has remained valid has significance beyond
the scope of this study.®

The hypothesis that transit ridership has become or is becoming less elastic
with respect to fares must be rejected.*!

4. Rainville, W.S. Estimated Loss In Passenger Traffic Due to Increases in Fares
(1961-1967). Washington: American Transit Association, February 9, 1968.

Rainville, W.S. Estimated Loss in Passenger Traffic Incident to Increases in Urban
Transit Fares. New York: American Transit Association, November 24, 1961.

Rainville, W.S. Estimated Loss in Passenger Traffic Incident to Increases in Urban
Transit Fares Since January 1, 1950. New York: American Transit Association,
November 24, 1961.

Graves, Frank M., Effect of Fare Changes on Ridership. Washington: Institute of Public
Administration, January 9, 1974.

Between 1947 and 1968, Walter Rainville of the American Transit Association wrote
a series of papers investigating the effects of fare increases on ridership. In these papers,
Rainville examined fare elasticities during a twenty year period from 1947 to 1967 using the
“before and after” technique. The resulting elasticities were then grouped by population of
principal city served. Rainville used a variation of the shrinkage ratio elasticity measure
with which he attempted to normalize ridership by netting out the ridership percentage loss
of the three months preceding the fare increase from the ridership percentage loss of the
six months after the fare increase. His before and after methodology is paraphrased below:

Average fare, under the previous rates, was based upon data for three

months immediately prior to the increase in fares. Average fare, under new
rates, was based upon data for a six-month period immediately after the

80 p 6-7.

81p;.
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increases. Months in which strikes or other unusual factors occurred were
omitted. Fare increases generally have a varying effect on transit riding
depending upon whether the increase becomes effective during the winter or
summer months and for this reason it was considered advisable to take a

longer period after the increase to fully compensate for the effect of the
increased fares and avoid the possibility of distortion because of seasonal

variations.

The “Percent Change in Traffic Over the Previous Year” was also based
upon the same three-month period prior to the increase and the same
six-month period after the increase. The “Net Change in Traffic Trend” is the
residual left after deducting “before increase trend of traffic” from the “after
increase trend of traffic” The assumption made here is that the trend of
traffic immediately preceding the fare increase represents a normal condition
as compared with the accelerated decrease immediately following the change.
The net difference between these two figures is taken as the actual percentage
loss in traffic due to the fare increase.

The “Percent Loss in Traffic for Each Percent Increase in Average Fare”
is the ratio of the “Net Change in Traffic Trend” to the “Percent Increase in
Average Fares.™®?

Given the number of factors which can and do affect ridership, Rainville’s blanket
assumption of ridership stability in the three months preceding the fare increase is certainly
suspect. Also, Rainville’s use of monthly average fare as a measure of price is also
debatable. Average fare changes with the composition of the riders even when the official
fare schedule remains unchanged. Therefore, a system offering deep student discounts will
notice an increase in average fare during summer months, even though the price charged
to passengers has remained unchanged. In these types of situations, which are quite
common, it may be erroneous to assume that ridership is a direct function of average fare
without some sort of seasonal calibration.

Rainville’s elasticity measures are useful because of the large number of observations
and the considerable time span his studies covered. His results are presented in Table 13.

82 Estimated Loss In Passenger Traffic Due to Increases in Fares (1961-1967), p.1.
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so that every elasticity estimate was comparable. This provided a base to géneralize about

transit passenger reaction to fare and service changes.

The authors also examined the methods with which fare and service elasticities have
been estimated. They then grouped the elasticity studies into two categories: 1) quasi-
experimental approaches and 2) non-experimental approaches. In outline form, the

breakdown is:

1. quasi-experimental approaches - analyze actual fare and service changes
a. estimating from demonstrations or practical experiments while controlling un-
measured influences
b. monitoring actual changes in services or current fares

2. non-experimental approaches - do not analyze actual fare and service changes
a. conventional time-series analysis of annual (not related to a specific fare or
service change) transit operating statistics
b. aggregate direct-demand and mode-split models based on cross-sectional data
c. disaggregate behavioral mode-choice models based on cross-sectional data

The report strongly supports the quasi-experimental approaches and its warning against
using elasticities derived from non-experimental models is given below.

... some problems are posed by reliance on elasticity estimates from a
cross-sectional data base containing no fare or service changes. One can not
rely on elasticity estimates from cross-sectional studies to provide accurate
estimates of annual changes in patronage in response to fare and service
changes, because the elasticity estimates from cross-sectional analysis reflect
a different type of behavior from that of the annual change behavior implicit
in time-series analysis. This difference between time-series and cross-sectional
models arises because the residuals from both models cannot be assumed to
belong to the same underlying population.

The demand elasticities from the cross-sectional models are generally
greater than the time-series estimates ... almost twice as large as elasticities
estimated from a actual demonstrations and experiments. Although
cross-sectional estimates have some advantages in forecasting structural
changes in demand ... dynamic annual change type responses can not be
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Table 13; Fare Elasticities from Rainville’s Papers, 1947-1967

ELASTICITIES
Population of Principal City Served 1947-1952 1950-1961 1961-1967
More than 500,000 0.34 : 0.28 <0.22
100,000 to 500,000 -0.36 0.33 0.32
Less than 100,000 033 0.36 0.43
TOTAL 0.35 0.32 0.35

As shown in Table 13, all of Rainville’s figures are very close to the Simpson-Curtin
elasticity of -0.36. This is not surprising since both Curtin and Rainville, being contemporar-
ies in time and field of study, probably used comparable databases. In any case, Rainville’s
calculations show a definite time trend toward inelasticity for the larger cities and toward
elasticity for the smaller cities. In a related paper, Frank Graves explains: “The apparent
decline in the first two rows of the table and the apparent increase in elasticities in the third
row may be traced to the absolute value of the fares. That is, above 30 cents, there is
probably a change in the elasticity or market response of riders.™ In conclusion,
Rainville’s studies seem to support the theory that there may exist a fare threshold above

which consumer behavior radically changes and fare elasticity declines.

5. Mayworm, Patrick D., Armando M. Lago and J. Matthew McEnroe. Patronage Impacts
of Changes in Transit Fares and Services. Washington: U.S. Department of Transporta-
tion Urban Mass Transportation Administration, 1980.

This report is a comprehensive review of transit fare and service elasticity studies per-
formed in the U.S. and the UK from 1947 to 1980. Although the authors did not
undertake their own elasticity experiment, they did aggregate and present over one hundred

different transit elasticities. The elasticities, which spanned time and space, were adjusted

83 Frank Graves, Effect of Fare Changes on Ridership, p.1-2.
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estimated from them with any degree of confidence unless supporting
time-series information is available... .

This report shows that quasi-experimental approaches result in more stable
elasticity estimates than the calibrated models relying on cross-sectional data,
in spite of the alleged superiority of these models in controlling for the
influence of exogenous variables.

The authors suggest that logit/probit analysis, though statistically superior and more
academically acceptable, will probably not bear results which are readily applicable to

real-world situations.

Some of the major findings of the report are:*

1. Transit demand is inelastic to fare changes. Transit fare elasticities range in
value from -0.04 to -0.87 with a mean of -0.28 + 0.16 and are not appreciably
different from the Simpson and Curtin formula.

2. Elasticities for fare increases (-0.34) do not differ from those for fare decreases
(-0.37). [This is somewhat disturbing. It would seem to be very difficult to win
back passengers with a fare decrease once they have left the system.}

3. Small cities (-0.35) have larger fare elasticities than large cities (-0.24). [A reason
for this may be that smaller cities were developed during the automobile age and
are more conducive to car travel.]

4. Off-peak fare elasticities (-0.40) are double the size of peak-fare
elasticities (-0.17). ;

S. Short-distance trips (-0.55) are more elastic than long-distance trips (-0.29).

6. Fare elasticities rise with income and fall with age. [This supports the hypothesis
that the “captive riders” are the poor and the elderly.]

7. Of all trip purposes, the work trip is the most inelastic (-0.10).

8. Ridership response to service changes is inelastic.

B4 p.14-1s.

85 The following quotes are taken from pages ix-xvi.
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9. Ridership is more responsive in lower-service areas.
10. Headway (-0.47) and vehicle-miles elasticities (+0.30 to +0.85) are similar.

11. Ridership is more responsive to improvement in headways (-0.42) than in-vehicle
time (-0.29).

Chapter 2, “Elasticity of Demand and its Measurement” is an excellent summary of fare
elasticity concepts and calculations. Two important points are stressed. First, “Without
information on the demand curve, it is impossible to determine which demand elasticity
measure best represents the transit market being observed” and second, “. . . whatever
demand elasticity measure is used, one must be cautious about interpreting the results as
definitive.”®

Chapter 5 presents a step-by-step method of computing revenue impacts from fare and
service changes, including dynamic interactions, by using the appropriate submarket
elasticities. This algorithm, if properly applied, will allegedly furnish the transit planner with

a good approximation of expected revenue changes.®

The most important hypothesis of this study is that the Simpson and Curtin rule is still
valid for system-wide transit analysis, although riders in different cities and among the
various transit submarkets within the same city may react differently to fare changes. Also,
that the aggregate fare elasticity may not give a true indication of the impact on revenues
from a fare increase. Therefore, a disaggregated demand model will be a more accurate
predictor of revenues. The authors state: “Although the mean fare elasticity does not
deviate much from the Simpson and Curtin rule of -0.30, there are several reasons to argue

against the indiscriminate use of this aggregate value.”® Lastly, this report also refutes

8 p 10.
87 pp. 84-88.
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the notion that fares become more elastic at higher fare levels: “In summary, the theoretical
agreement for suggesting that fare elasticity values are dependent on the size of the fare

change and fare level have yet to be substantiated.”®

6. Knudson, Bill and Michael A. Kemp. The Effects of a 1976 Bus Fare Increase in Erie,
Pennsylvania, Working Paper 1428-01. Washington: The Urban Institute, 1980.

Knudson, Bill and Michael A. Kemp. The Effects of a 1976 Bus Fare Increase in the
Kentucky Suburbs of Cincinnati, Working Paper 1428-02. Washington: The Urban
Institute, 1980.

Knudson, Bill and Michael A. Kemp. The Effects of a 1977 Bus Fare Increase in Forth
Worth, Texas, Working Paper 1428-04. Washington: The Urban Institute, 1980.

Kemp, Michael A. Planning for Fare Changes: A Guide to Developing, Interpreting, and
Using Fare Elasticity Information for Transit Planners, Working Paper 1428-05.
Washington: The Urban Institute, 1980.

In this series of reports, Kemp and Knudson used monthly time series data and
multiple linear regression analysis to estimate the interdependent effects of passenger
ridership, bus service level and travel costs in relation to the respective supply and demand
functions. The resulting simultaneous equations models were used to estimate ridership at
the system-wide level and for the cash paying, token and pass paying, student, elderly and
handicapped submarkets. The statistical methodology is advanced, employing two-stage
least squares with first-order autocorrelation corrections, dummy variables for unknown data
and an instrumental variable for the number of bus miles operated each month. Working
Paper 1428-05 is a manual detailing how to use these econometric techniques to estimate
fare and service elasticities. The other papers are dissertations of the fare elasticity studies

of the respective cities.

8 p 2o,
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The genefal form of Kemp and Knudson’s models is:

On the demand side, the number of bus trips made a month is influenced
by, among other things, the fare and the level of service provided:

q=D(L,.)

where q is the number of bus trips made
p is the fare level; and
L is the vector of level of service attributes.

Typically, one does not have available any accurate time series data char-
acterizing the various service attributes (speed, waiting time, comfort, and so
on) which are believed or known to influence demand, nor to have informa-
tion about the corresponding attributes of competitive modes, particularly the
private automobile. The only readily available statistic which can be used as
an imperfect proxy for the level of service is the number of bus miles
operated, m. Thus it is common to examine variations in q over time as a
function of p, m and any other relevant variables that are available.

But on the supply side, the amount of service provided in a given month
is influenced by, inter alia, the transit management’s expectation of what the
ridership will be in that month. [. . .] The supply equation must be of the
form:

m = §( ?l )
where a is the transit management’s expectation of q.

In econometric terms, the situation can be characterized as on in which q
and m are jointly determined; attempts to estimate one of these equations
without consideration of the other will lead to “simultaneous equations bias.”
The errors associated with measuring m are likely to vary systematically with
levels of q, and estimation of the demand equation by ordinary least squares
method will be inappropriate. One possible corrective measure is to devise
an instrumental variable to be used in the stead of m, and that is the
procedure chosen here.

. . . One common functional form frequently used in analyses of this type
is the “constant elasticity” specification, in which the logarithm of the level of
demand is regressed as a linear function of the logarithms of the price and
(perhaps) of other influencing variables. As Appendix A details, this type of
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function has the property that the price elasticity is the coefficient of the “log
price” variable, and is constant with respect to changes in the other influ-
encing variables. However, in the case of transit ridership there is very little
empirical evidence to support this “constant elasticity” hypothesis over
anything other than a very small price change. To the contrary, most of the
evidence suggest that fare elasticities do vary with service levels and other

influencing factors.?

Kemp and Knudson used this technique to examine the impact of fare changes on
ridership for the Transit Authority of Northern Kentucky (WP 1428-02), City Transit
Services (WP 1428-04) and the Erie Metropolitan Transit Authority (WP 1428-01). His
monthly database consisted of ridership counts by passenger/fare categories, vehicle miles,
total population size and population of passenger categories, area-wide employment,
gasoline price and availability, month length, weather factors and seasonal dummy variables.
All monetary price variables are adjusted for inflation by using the general consumer price
index to convert them to constant dollars. The number of observations were, Kentucky: 25
months, Erie: 48 months, Fort Worth: 27 months.

The statistical test results of these studies are generally very good with R? values of 0.9
to 0.99. The report stresses that model validation is imperative and that coefficients
characteristics, as measured by their sign, magnitude and student-t test, must reasonably
correlate with empirical evidence and theories. The authors state that elasticity estimation
“cannot be prescribed beforehand to such a degree that it can be carried out in a

semimindless way.™?!

The reports present both point and midpoint arc elasticity estimates and, in most cases,
there is little difference between the point elasticity measured at the mean and the midpoint

arc elasticity. The midpoint arc elasticity estimation method involves using the derived

9o Planning for Fare Changes, p.31.

°11bid., p.31.
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Table 14. Fare Elasticitie:s—trom Knudson'-fkemp Papers

Kentucky Suburbs Erie, Pa. Fort Worth, Texas
Point Elasticity 0.12 <0.33 -0.38
Midpoint Arc Elasticlty (3 months) -0.08 0.37 0.44
Midpoint Arc Elasticlty (6 months) 0.1 €0.32 0.46
Midpoint Arc Elasticlty (9 months) 0.12 0.32 -0.39
Midpoint Arc Elasticity (1 year) 0.12 0.32 0.41

equations to forecast “what the patronage would have been in the months following the fare
change if in fact the fare had not been changed but if all other variables assumed the values
observed for them in those months.™ By using the forecasted ridership as the “before”
case and the actual patronage as the “after” case, the arc elasticity can be measured. The
aggregate system fare elasticities from the three areas studied are shown in Table 14.%

Note that the Erie and Fort Worth fare elasticities are close to the Simpson and Curtin
formula, however the Kentucky suburbs elasticity is about one-third of the Simpson and
Curtin estimation. This finding lends credence to the hypothesis that Simpson and Curtin,
although generally accurate, may be grossly inadequate for a particular transit system or for

a specific transit submarket.

The econometrics in these reports are good. The authors have worked to insure that
the results are statistically adequate and empirically acceptable. In fact, they have adopted
the bold position of stating in the abstract of one report that their study was partially
inconclusive. In Working Paper 1428-04 they state: “However, in this case (Fort Worth)
data limitations and statistical problems inhibited the ability to draw firm conclusions about

2 Ibid., p.42.

93 These elasticities shown in this table are f rom Bill Knudson and Michael A. Kemp, The Effects
of a 1976 Bus Fare Increase in the Kentucky Suburbs of Cincinnati, p.43., The Effects of a 1976 Bus
Fare Increase in Erie, Pennsylvania, p.41., The Effects of a 1977 Bus Fare Increase in Fort Worth,
Texas, p.43.
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fare elasticities for each of the market segments studied.”™ Also, they demonstrate the
power of the two-stage least squares methodology to explicitly recognize the interdepen-
dence of bus service level and ridership. Most researchers incorrectly treat bus service as

an exogenous variable which will lead to simultaneous equations bias.

The drawbacks of this type of analysis, as pointed out by the authors, center on
violations of the basic assumptions of the multiple regression model.”® The violations are:

1. presence of multicollinearity;
2. serial correlation of errors (autocorrelation); and,

3. inefficient coefficient estimates and resulting biased standard errors.
Three reasons why these violations are inherent to transit data are:

1. In transit, what happened last month has influence on what will happen this
month;

2. Data unavailability causes the exclusion of important variables which change
systematically, inevitably leading to serial correlation; and,

3. Data measurement errors are likely to be associated with time due to the same
data collection methods and the people collecting the data.

Although statistical routines (covariance tests, Durbin-Watson test, Cochrane-Orcutt
procedure, instrument variable estimation) can measure and partially correct for these viola-
tions, the least-squares derived coefficients may still not be the best linear unbiased
estimators. In some cases market structure approximations, such as fare elasticity, will be

“pi

95 Planning for Fare Changes, p.29.
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inefficient and inconsistent, even though the predictive qualities of the model are still
accurate. In short, application of this sort of econometrics is something of an art.

Regarding future research, the authors make two very pertinent points:

Because of this problem (violation of assuﬂxptions), it is sometimes argued that
regression techniques should not be used for time series analysis. A class of
stochastic models generically referred to as Box-Jenkins techniques has some

advantages for forecasting purposes.”

and

Remember again that the main reason for deriving elasticities is to obtain a
summary measure of sensitivity for broad comparative purposes, and that for
forecasting purposes one would wish to use the complete demand equation in any
case.

7. Kyte, Michael, James Stoner and Jonathan Cryer. Development of Time-Series Based
Transit Patronage Models. 2 vols. Jowa City: The University of Iowa, 1985.

This report describes the development and application to the Tri-Met transit system
(Ponland Oregon) of a time-series modeling technique generally known as the Box-Jenkins
transfer function model. The transfer function methodology is an extension of the ARIMA
(integrated autoregressive moving-average) technique. The basis of the ARIMA technique
is the hypothesis that if a variable has exhibited some type of systematic behavior in the past
one may mathematically model this behavior and use the model to infer something about
probable future behavior. Very simply put, the ARIMA model is a kind of advanced -
extrapolation technique. The Box-Jenkins transfer function model provides a way to
combine the ARIMA technique with regression analysis to “produce a better forecast than

% Ibid., p.29.

9 Ibid., p.54.
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would be possible through the use of either of these techniques alone.”™® The idea is to
use the information contained in the unexplained variance of the dependent variable to
enhance the forecast of the structural model. This aspect makes the transfer function model
a more accurate forecasting tool than regression analysis alone, especially when the
structural relationships produced by regression analysis are themselves changing over time
and when the regression residuals exhibit serial correlation in either a linear or cyclical
fashion. The chief disadvantage to this type of analysis is that one must have some know-
ledge of both the causal relationships and their associated lag structures.

-

The transfer function model can “resolve several problems that occur when standard
regression models are used with time series data.”™ The authors have outlined these

problems, which are presented in Table 15.2®

Table 15. Comparison of Standard Regression and Transfer Function Models

Compaearison Standard Regression Transfer Function
—— e
1. Correlated input variables Yes, the input variables are No, data is differenced.
highly correlated. Muiticol-
linearity is present.
2. Autocorrelated errors Yes, the error structure is highly | Yes, but model structure allows
autocorrelated, violating basic for correlated errors.
model assumptions.
3. Lag structure for No, only contemporaneous Yes, methodology directly in-
input variables correlation is assumed vestigates the nature of dynam-
ic relationships.
4. Coefficient estimates and Estimates are inefficient and the | Estimates are efficient and the
standard errors standard errors (and thus the standard errors are unbiased.
significance tests) are biased.

%8 Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models & Economic Forecasts, p.593.
"p2.

100 Table 4, p.15.
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The reduction of the effects of some persistent regression problems makes time-series
modeling a good econometric tool. Also, the transfer function model permits the transit
planner to include past information about lagged relationships and seasonal ridership
patterns into the forecast. However, one must assume that these lag structures and seasonal

patterns are fairly consistent over time.

The authors used monthly and quarterly data from 1971 to 1982, which was provided
directly by the Tri-Met system, to generate sixteen transit ridership models: one for the
system as a whole, six representing distinct geographic sectors and nine for individual bus
routes. The general form of the models is:

R, = F(SL,, TC,, MS,, S, L) + N,

" where R, = transit ridership
SL, = the level of transit service (route miles, platform miles or hours)
TC, = travel costs by auto and by transit (fare, gasoline price)
MS, = size of the travel market (population, employment of service area)
S, = seasonal factors such as weather (temperature, rainfall, snowfall)
I, = interventions(gasoline shortages, marketing plans, weather extremes)

N, = the error structure
These structural relationships were then fitted to the transfer function.

At the system level, this study produced fare point elasticity of -0.29, a service level
point elasticity of 0.51, a gasoline price point elasticity of 0.32 and a employment point
elasticity of 0.49. Notice that the fare elasticity is rather close to the Simpson and Curtin
formula. The system-wide predictive characteristics of the model were good with a mean
absolute percent error of 2.1 percent for a 12 month forecast. The methodology used here
is perhaps one of the better ways to forecast the effects of a fare increase, although the
caliber of the causal relationships is probably no better than that of the standard regression
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model. This may be a consideration if it is deemed that determining market structure is of

greater importance than providing an accurate forecasting tool.

At the route level, the study found that “the response delay to service level changes
tends to be about two to three time longer for urban routes than for suburban routes.”%
At the geographic sector level, fare point elasticities varied from -0.13 to -0.42 with a mean
value of -0.23. Route level fare elasticities varied from -0.35 to -0.90. Judging from these
values, it seems that patrons of some routes are more sensitive to fares than the system as
a whole. Taking this a step further, the routes whose fare elasticities approach unity may
experience a drastic decrease in ridership if fares are raised. It is conceivable that

across-the-board fare increases actually may reduce revenue on some Tri-Met routes.

The strongest objection to this model is that one gets the impression that the report,
while mathematically correct, fails to apply basic economics principles. For instance, the
authors state that “natural logarithms of the data were used, so that model coefficients give
the elasticities directly for each variable.”'® It certainly makes analysis convenient when
one may simply read the elasticities from the coefficients, however this is not the reason to
use log transformations. Log transformations are sometimes used when one must fit a
non-linear demand function with linear regression techniques. Log functions are also used
in time-series analysis as a means of removing growth over time of the variance of the data.
Many economists believe that “one should use transformations, of any type, only when one
is reasonably sure that the demand curve is non-linear at the points of interest and this only
because non-linear estimation is computationally expensive and laborious to validate since

the normal significance tests are not directly applicable.”*®

01ps
102p s,

103 Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models & Economic Forecasts, p.266.
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The report is nebulous on the interpretation of the findings. The queStion: “how can
this knowledge of elasticities be used to help Tri-Met achieve greater operational
efficiency?” is not explicitly answered anywhere. Obviously, the aim of economic research
should be to produce a complete and practical application.

The second shortcoming of this study is that it did not explicitly investigate the inter-
dependence of ridership and service as the Kemp and Knudson studies did with their
simultaneous equations models. The authors realized this and state:

The transfer function models used here assume only a one-way depen-
dence; that is, input variables affect the output variable, but not vice-versa.
For example, as capacity limits are approached as ridership increases,
additional service might be required. Thus ridership level will influence level
of service. The general multiple time-series model developed by Tiao and
Box (1981) has the ability to handle this two-way dependence.®

Finally, the study did not examine transit submarkets disaggregated by demographic
characteristics, purpose of trip and peak versus off-peak fares. The data needed to explore
these relationships may not have been available at the quarterly or monthly level. This type
of investigation usually is left to the realm of the cross-sectional model. However, with the

appropriate data proxies, the transfer function model may be a useful tool.

8. Batchelder, J.H., K.W. Forstall and J.A. Wensley. Estimating Patronage for Community
Transit Services. Washington: U.S. Department of Transportation Urban Mass
Transportation Administration, 1984.

Unlike the other papers reviewed, this report was designed to help transit planners
predict ridership for new paratransit service, and therefore its findings are not readily

applicable to fare elasticity research, which usually focuses on existing service where past

104 p 73,
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operating data was available. It is included in this literature review because it provides a
concise explanation of ridership estimation techniques, and it details a cross-sectional
regression analysis method which purports to forecast ridership with only socio-economic
data. Socio-economic factors greatly influence ridership in the long-run anda method which
combines socio-economic effects with operating variables would be novel and useful. Much
of the report concerns supply decisions including route layout and fare and service policy

and these chapters are not reviewed here.
The report outlines five ridership estimation methods which are given below:1%

1. Analogy - The use of ridership levels attained on similar services in
similar locations. [The report presents some tables and analogues
which chart weekday ridership as a function of population. One
disadvantage of this method is that the distributions are quite
dispersed, nonetheless, the information in the table can be used to
obtain rough bounds on potential ridership.}

2. Elasticity — Service and fare elasticities derived from ridership and
mode choice models may be used to estimate the impact of proposed
supply changes. [The report discusses a technique to apply elasticities
obtained from other research to project ridership within a certain
confidence interval. Confidence intervals which are usually given in
the 75 10 95 percent range are perhaps easier for non-technical people
to understand than standard deviation.]

3. Direct Estimation — Ridership data from existing services have been

synthesized into graphs, equations, nomographs, and similar techniques

105 pp 18-19.
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that can be applied to estimate ridership on a proposed service. [The
use of nomographs here is very interesting and may be a good way for
the researcher to convey his elasticities findings. The authors also
present equations obtained by regressing average weekday ridership
per square mile against population, area, fleet size, automobile
ownership and percent of population over 64 years of age. This

analysis is of limited use since fares are excluded, but the use of census

data is appealing.]

. Mode Choice — Ridership on proposed feeder services can be

estimated using mode-choice models, provided that total travel from
the served area to the line-haul route being fed can be measured or
estimated. To use mode choice models, the user [also] needs
information on traveler characteristics (such as auto availability) as
well as on the service quality of optional modes and total travel.

. Equilibrium Models - Direct estimation equations or mode-choice

techniques can be imbedded in an analytical procedure that also
estimates the service quality resuiting from the estimated ridership.
These supply and demand models are iteratively applied until their
results converge. The advantage of an equilibrium model is that,
unlike other models, it explicitly recognizes and responds to the high
degree of interdependency between service quality and ridership. The
principal disadvantage is the amount of data and time required for

application.
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The report addresses the fact that revenue estimation is difficult when complex fare
structures are in place for different population groups.!® As a solution to this problem,
the authors used transit system and census data to calculate a propensity ratio by age group.
This ratio is defined as the percent of all riders in the age group over the percent of all
persons of that age group. The authors suggest that the researcher may wish to collect
ridership data broken down by age group if ridership by fare category is unavailable. The
propensity ratios should be transferable across cities, assuming that people in similar age

brackets have similar transit needs.

Finally, the authors review mode choice models and attempt to adapt a specific model
to general transit ridership. The mode choice models need so much data that they are
infeasible for a nation-wide elasticity study, but these models illuminate an important point:
it is the cost and service differences between bus and car travel that determine how people
choose to travel. For instance, the model reviewed in this report uses bus versus car travel
time differences and fares versus out-of-pocket auto expenses as casual variables. It is not
the absolute level of bus service or cost which matters, but the level relative to competing

modes.

The last chapter presents three case studies using the planning techniques which were
evaluated in the earlier sections. The examples are set in Norfolk, Va., Merrill, Wis., and
Baltimore, Md. These step-by-step procedures are the strongest part of this study as they
lead the transit planner through some fairly complex calculations using actual situations.
The appendices contain census tables that may be useful to future research, especially the

income and auto ownership data.

106 p 62,
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9. Rose, Geoffrey. “Transit Passenger Response: Short and Long Term Elasticities using
Time Series Analysis,” Transportation, 13,2 (1986), 131-141.

This study investigates the effects of gas price, fare, service and weather factors on
ridership of the Chicago Transit Authority rail system. Since the study was limited to rail
transit, it does not have direct implication on the current research. However, it was
included in this literature review because the ARIMA model was used in the study and the

issue of short vs. long term impacts was investigated.

The study used over 11 years of monthly data (135 observations) covering the period
from January 1970 to March 1981. During this period, there was a downward trend in
ridership (1970-78) followed by an upward trend. The cash fare increased in four steps from
40 cents to 80 cents. The period of study included the energy crisis in 1974 and a
substantial gas price increase in 1979-80. The data base is shown in Table 16.

Table 16. Variables and Descriptions in CTA Rail Ridership Model

Average weekday ridership on the CTA rail system (unlinked

Variable

(A) Dependent variable

ridership passenger trips)
(B) Explanatory variables Weekday service (train miles)
service
Fare () Aduht cash fare (cents) (referred to as “Cash Fare”)

(i) “Deflated Fare™ (March 1981 cents) - “Cash Fare”
deflated by Monthly Consumer Price Index

Cost of car trips () Deflated gas price (March 1981 ¢/gal)
(i) Cost per mile of car trips (March 1981 ¢/mile) - deflated
gas price divided by average fieet miles per gallon

Climatic effects () Average dally rainfall
(i) Average daily snowfall




Review of Selected Fare Elasticity Studies - 97

The final equation is as follows:

R, =-153852.0 + 0.56R,, + 044R, ;; - 024R, ;5 + 10017GAS, , - 1782.4GAS, ;,
+ 11682GAS, 5 + 11.3SER,_,, - S.78SER,_, - 989.8FARE, , + 2896FARE, ,,
- 1474.TFARE, ,, + 184SNOW, ,, + a,

where R, is ridership at time t, GAS, is deflated gas price at time t, SER, is service at
time t, FARE, is deflated fare at time t, SNOW, is average daily snowfall at time t, and a,

is an error term.

Tests show that the coefficients of FARE and SNOW variables are not statistically
significant. The implications of the equation are:

s Short term gas price elasticity is 0.11

= Short term service elasticity is zero

= Short term fare elasticity is zero

The demand equation is then rewritten to move all the ridership terms to the left hand
side of the equation. The cumulative effect over time of each explanatory variable in the
equation constitutes a long term effect. The results:

» Long term gas price elasticity is 0.18

s Long term service elasticity is 1.84

» Long term fare elasticity is zero

Geoffrey Rose concludes:

The service reduction would presumably cut costs. Since our model predicts a
twelve month delay before service changes influence ridership, we would not
expect the service change to have any short term effect on revenue. The fare
increase should result in both short and long term revenue increases since a zero
fare elasticity is indicated by the model. With improved revenue and reduced
costs the new policy should improve the operator’s financial position, at least in
the short term.
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In the long term the service reductions will lead to significant ridership losses
because the long term service elasticity is greater than 1. This ridership loss will
tend to offset the revenue increase obtained from the higher fares.!®’

While the Rose study is interesting in that it separates the short term (one month) and
long term (one year) effects of changes in gas price and service elasticities, it is not likely
to be accepted by many economists and researchers. The study was not based on a solid
economic theory. The notion that fare does not affect rail ridership, either in the short or
long term, even for the marginal “choice” riders, is difficult to accept. In addition, the
conclusion that the reduction of service (train miles) will not result in an immediate effect
on ridership, which implies that there is little or no substitution for rail transit in Chicago,

needs further verification.

107 p 142,
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American Public Transit Associlation
1201 New York Avenue, NW - Sulte 400
Washington, DC 20005

May 1988
Fixed-Route Motor Bus Fare impact Survey Return by June 10, 1988
APTA Research and Statistics Department Contact: Jim Linsalata
Page 1 of 5 (202) 898-4125
Transh System:
Mailing Address:
Prepared by: Phone ( ) C ext.
INSTRUCTIONS

This survey requests that you provide monthly data for some very basic fixed-route motor bus
statistics. By collecting and compiling this information, APTA will attempt to provide all participating transit
systems with a comprehensive, quantitative study on how passengers respond to fare increases. This
research project will help transit planners gauge and prepare for the effects of future fare changes on motor
bus ridership. Although the compietion and return of this form to APTA Is entirely voluntary, we hope that
you will fill out all the items to the best of your abllity. if you have any questions, please do not hesitate to
call Jim Linsalata, Manager - Research and Statistics at (202) 898-4125.

There are three parts to this survey:

s Part I: TOTAL MOTOR BUS (page 3)
= Part Il: MOTOR BUS - Peak Periods (page 4)
= Part lll: SIGNIFICANT EVENTS affecting ridership (page 5)

in Part Ii, the peak period data are for A.M. and P.M. peaks combined and “Peak Periods® are as
defined by your system. We realize that not all systems are capable of separating out the peak period
operating statistics. in this case, fill out Parts | and il only. In Part Ili, we ask that you report any significant
events which may have caused an unusual motor bus ridership growth or decline.

On page 2 are definitions of the survey forms' column headings. Hopefully, these definitions will
unambiguously identify the data items that you have been asked to supply. Also included in these definitions
are the corresponding Section 15 account numbers, which may be conducive to those transit systems
which report to UMTA.

Lastly, please provide your best estimate whenever a month(s’) data is missing and insert an asterisk
(*) next to the estimated figure(s). A sound analysis of your transit system can not be conducted unless
there is a continuous sequence of comparable data. in most cases, a knowledgeable guess is very close
to what the actual number is and entirely adequate for the purposes of this study. These raw statistics will
not be published and are for the internal use of APTA's Research and Statistics Department only. APTA will
only publish the mathematical analyses and equations and the general conclusions and recommendations
of the project.

* Thanks for your time and effort *
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Fixed-Route Motor Bus

Base Adult Cash Fare

Peak Aduit Cash Fare

Unlinked Passenger Trips

Vehicle Revenue Miles

Revenue Vehicle Hours

Passenger Fare Revenues
For Transit Service

‘l

Transit service provided by all motor bus type operations along regularty
scheduled routes. Exciudes all types of demand response service.

The amount of fare paid for a single ride, excluding zone and transfer
charges, during the off-peak period by passengers who are not entitied
to reduced fares and who pay the fare with money.

The amount of fare pald for a singie ride, excluding zone and transfer

charges, during the peak periods by passengers who are not entitied to
reduced fares and who pay the fare with money.

Transit trips taken by both initial-board (originating) and transfer
(continuing) transit patrons. Each passenger is counted each time that
person boards a transit vehicle regardiess of the type of fare paid or
transfer presented. Corresponds to UMTA Section 15, Form Number 406,
line 12.

Sum of all passenger vehicle miles operated while in revenue service.
Excludes miles travelled to and from storage facilities and other
dead-head travel. Corresponds to UMTA Section 15, Form Number 406,
line 4.

Total number of hours revenue vehicles are operated in revenue service.
Excludes hours consumed while travelling to and from storage facilities
and during other dead-head travel. Corresponds to UMTA Section 15,
Form Number 406, line 6.

Revenue eamed from carrying passengers along regularly scheduled
routes. Includes the base fare, zone premiums, extra cost transfers and
quantity purchase discounts applicable to the passenger's ride. Also
included is "park and ride” revenue. Excluded are charter service
revenues, school bus service revenues and all non-transportation
revenues. Corresponds to UMTA Section 15, Form Numbers 201 or 202,
Account Number 401.



R e Base -
Adult  Unlinked Vehicle Vehicle Passenger Fare
Cash  Passenger Revenue Revenue Revenues For

Date Fare Trps . Mies Hours _ Iransh Service
Jan 1984 $0.65

Feb -

Mar

Apr

May

Jun

Jul

Aug

Sep
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Jan 1985
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Jan 1986 $0.85
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Peak -
Aduit  Unlinked Vehicle Vehicle Passenger Fare
Cash  Passenger Revenue Revenue Revenues For

Date Fare Trps ___ Mies Hours Transit Service
Jan 1984 $0.65 '
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Part Ili: SIGNIFICANT EVENTS Transit System:

Page50ot5 g —
1. Your morning peak period hours are from to a.m.
2. Your evening peak period hours are from to p.-m.

3. Please check each passenger category (one check every ling) to describe the types of unlinked
passenger trips reported in Part | and Part Il.
Al None
Adutt
Reduced
Transfer

Charter
Free

N

1
e ][]

4. Please report all work stoppages from

Date began Date ended

Date began Date ended

Date began Date ended

5. Please list any other events and their dates which have had a significant impact on your bus ridership.
Include such occurrences as special marketing promotions, major bus route extensions or a worker lay
off by a principal employer.

6. If requested, would your transit system be able to supply the data in Parts | and Il by:

Fare category (i.e. elderly, student) Not at all Completely
Partially:
Bus route (i.e. suburban, intercity) Not at all Completely

Partially:
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EQUATIONS AND VARIABLES

The equations which have been described earlier in this report are presented in this
appendix in standard regression output format. The output is ordered alphabetically
according to principal city served by the transit agency. Below is a list of the notation used

in the regression output.

List of Notations Used in Regression Output

Ridership Variable
LUTRIPS natural log of unlinked trips per months
DUTRIPS first regular difference of LUTRIPS
FUTRIPS first regular and seasonal difference of LUTRIPS

Service Variables

LVMILES natural log of revenue vehicle miles per month

DVMILES first regular difference of LVMILES

N_DVMILE specifies that DVMILES is a numerator coefficient in the polynomial
D_DVMILE specifies that DVMILES is a denominator coefficient in the polynomial
FVMILES first regular and seasonal difference of LVMILES

N_FVMILE §pec|ﬁes that FVMILES is a numerator coefficient in the polynomial
D_FVMILE specifies that FVMILES is a denominator coefficient in the polynomial
LVHOURS natural log of revenue vehicle hours per month

DVHOURS first regular difference of LVHOURS

N_DVHOUR specifies that DVHOURS is a numerator coefficient in the polynomial
D_DVHOUR specifies that DVHOURS is a denominator coefficient in the polynomial
FVHOURS first regular and seasonal difference of LVHOURS

N_FVHOUR specifies that FVHOURS is a numerator coefficient in the polynomial
D_FVHOUR spectfies that FVHOURS is a denominator coefficient in the polynomial
LWORKDAY natural log of number of working days in the month i
DWORKDAY first regular difference of LWORKDAY

N_DWORKD specifies that DWORKDAY is a numerator coefficient in the polynomial



D_DWORKD
FWORKDAY
N_FWORKD
D_FWORKD

Fare Variables

LAVFARE
DAVFARE
N_DAVFAR
D_DAVFAR
FAVFARE
N_FAVFAR
D_FAVFAR
LBSFARE
DBSFARE
N_DBSFAR
D_DBSFAR
FBSFARE
N_FBSFAR
D_FBSFAR

LGAS
DGAS
N_DGAS
D_DGAS
FGAS
N_FGAS
D_FGAS

LEMPLO
DEMPLO
N_DEMPLO

Appendix C
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.

specifies that DWORKDAY is a denominator coefficient in the polynomial
first regular and seasonal difference of LWORKDAY

specifies that FWORKDAY is a numerator coefficient in the polynomial
specifies that FWORKDAY Is a denominator coefficient in the polynomial

natural log of real average fare per month

first regular difference of LAVFARE

specifies that DAVFARE is a numerator coefficient in the polynomial
specifies that DAVFARE is a denominator coefficient in the polynomial
first regular and seasonal difference of LAVFARE

specifies that FAVFARE is a numerator coefficient in the polynomial
specifies that FAVFARE is a denominator coefficient in the polynomial
natural log of real base fare

first regular difference of LBSFARE

specifies that DBSFARE is a numerator coefficient in the polynomial
specifies that DBSFARE is a denominator coefficient in the polynomial
first regular and seasonal difference of LBSFARE

specifies that FBSFARE is a numerator coefficient in the polynomial
specifies that FBSFARE is a denominator coefficient in the polynomial

Alternate Mode Cost Variables

natural log of real local monthly unleaded gasoline price in cents per gallon
first regular difference of LGAS

specifies that DGAS is a numerator coefficient in the polynomial

specifies that DGAS is a denominator coefficient in the polynomial

first regular and seasonal difference of LGAS

specifies that FGAS is a numerator coefficient in the polynomial

specifies that FGAS is a denominator coefficient in the polynomial

Local Travel Market Variables

natural log of local employment
first regular difference of LEMPLO
specifies that DEMPLO is a numerator coefficient in the polynomial
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D_DEMPLO
FEMPLO

N_FEMPLO
D_FEMPLO

Error Structure
MA
MA_SEAS
AR
AR_SEAS
RHO

- ——
—

specifies that DEMPLO is a denominator coefficient in the polynomial
first regular and seasonal difference of LEMPLO

specifies that FEMPLO is a numerator coefficient in the polynomial
specifies that FEMPLO is a denominator coefficient in the polynomial

the coefficient for the regular moving average polynomial, 8
the coefficient for the seasonal moving average polynomial, ©
the coefficient for the regular autoregressive polynomial, ¢
the coefficient for the seasonal autoregressive polynomial, &
the coefficient for first-order serial correlation correction, p

intervention Variables
The type and form of the intervention variables are defined at the far right side of the

equation output, if used.



110

Appendix C

CAPITAL DISTRICT TRANSIT AUTHORITY, ALBANY, NY -- SYSTEM TOTAL Tue 09-12-1989

CONVERGENCE REACHED ON ITERATION ]

DEPENDENT VARIABLE 35 FUTRIPS
FROM 1984: 6 UNTIL 1987: 3
TOTAL OBSERVATIONS 3% SKIPPED/MISSING 0
USABLE OBSERVATIONS 34 DEGREES OF FREEDOM 28
Ree2 .63358927 RBAR®*2 .56815878
SSR .41008796E-01 SEE -38270091E-01
DURBIN-WATSON 1.93937693
QC 15)s 15.5931 SIGNIFICANCE LEVEL .409598
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR
e aeeRree [, . ] L, ¢

1 CONSTANT 1 0 .13005306-03 .1174240E-02

2 N_FAVFAR 2 1 -.4556279 . 1333739

3 N_FUORKD 3 0 .4255098 . 1288596

& N_FEWPLO & O .B8034025 .5201686

5 [T 5 1 -.9546064 1196703

6 MA_SEAS 6 12 -.4917656 -2450001

T-STATISTIC
e e

- 1107551
-3.416170
3.302119
1.544504
~7.976973
-2.007206

SIGNIF LEVEL
e )

.9126007
. 1959040E-02
-2626187€E-02
- 1336946
- 1094079E-07
+5446859€-01

ALEXANDRIA TRANSIT COMPANY, ALEXANDRIA, VA -- SYSTEM TOTAL Mon 08-14-1989

CONVERGENCE REACHED ON ITERATION 2

DEPENDENT VARIABLE 32  FUTRIPS
FROM  1985:12 UNTIL  1988: 4

TOTAL OBSERVATIONS 29  SKIPPED/MISSING 0
USABLE OBSERVATIONS 29  DEGREES OF FREEDON 26

R**2 92223722  RBAR**2 90927676

SSR .59383376E-02  SEE .15729931€-01
DURBIN-WATSON 2.03070561
aC )= 11.0472 SIGNIFICANCE LEVEL .682322
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
*ew TOTRTRR L, . ] *ne SAORTRCTTRNE SRV OTENORORR w *ee
1 CONSTANT 1 O -.9020895E-02 .2025083E-02 -3.083979

2 W FWILE 2 0 .9961782 (6445766E-01  15.45477

3 NFAVFAR 3 0 -.1356247 SO31SS6E-01 -2.28649%

& NFAVEAR & 2 -.2764988 .6418428E-01 -4.307889

S  N_FENPLO 5 5 .72B6597 .3469121 2.100415

SIGNIF LEVEL

stvetererRee
.S078913E-02
-5659476E-13
-3134567E-01
-2614119€-03
4638169E-01

LEHIGH & NORTHAMPTON TRANSP AUTH, ALLENTOWN PA -SYSTEM TOTAL Wed 09-20-1989

CONVERGENCE REACHED ON ITERATION 2

DEPENDENT VARIABLE 33 FUTRIPS
FROM 1986: 7 UNTIL 1988: 4
TOTAL OBSERVATIONS 22 SKIPPED/MISSING 0
USABLE OBSERVATIONS 22 DEGREES OF FREEDOM 18
Rv*2 . 74016627 RBAR™™2 .69686065
SSR . 7T7598606E-01 SEE -65658462E-01
DURBIN-WATSON 2.22868938
e 1M)= 5.56778 SIGNIFICANCE LEVEL .900593
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR
a*we *oTeRNe *ww 'R TN TTOROR Tttt edy
1 CONSTANT 1 0 -.3222015E-02 .1452492E-01
2 N_FWMILE 2 0 9595755 - 3322448
3 N_FAVFAR 3 0 -.7466957 .2866821
4 N_FGAS & 2 .6180107 . 1808205

T-STATISTIC
soorteonotTn

-.2218266
2.888158
-2.604612
3.417814

SIGNIF LEVEL

SRR TETeTE
-8269461
9792567E-02
- 1792469€-01
-3068017€-02
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VALLEY TRANSIT, APPLETON, W1 -- SYSTEM TOTAL Thu 09-21-1989

CONVERGENCE REACHED ON ITERATION 37

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1986: 6 UNTIL 1988: 5

TOTAL OBSERVATIONS 26 SKIPPED/MISSING 0

USABLE OBSERVATIONS 24 DEGREES OF FREEDOM 19

R**2 67914718 RBAR**2 61159922

SSR .46071483E-01 SEE .69242610¢-01

DURBIN-WATSON 1.99128713

Q¢ 12)= 8.66210 SIGNIFICANCE LEVEL .731488

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC  SIGNIF LEVEL

-ee L "o SON *
1 CONSTANT 1 O .2B03322E-02 .6367744E-02  .4402379 6647322
2 N_FWILE 2 0 .5953103 . 1561584 3.812221 -1176496E-02
3 N_FAVFAR 3 0 -.2550770 B931534E-01 -2.855914 .1011054E-D1
4 N FENPLO & 3 2.769706 1.604273 1.726455 . 1004899
5 AR 5 1 -.5815990 .2128860 -2.731974 .1324208E-01

ATLANTA RAPID TRANSIT AUTH., ATLANTA, GA -- SYSTEM TOTAL Thu 09-21-1989

DEPENDENT VARIABLE 15 LUTRIPS

FROM 1985:10 UNTIL 1988: 5

TOTAL OBSERVATIONS 32 SKIPPED/MISSING 0

USABLE OBSERVATIONS 32 DEGREES OF FREEDOM 28

R**2 55973374 RBAR**2 .51256236

SSR .4BTT1339E-01 SEE 41735279€-01

DURBIN-WATSON 1.98093443

QC 15)= 10.0778 SIGNIFICANCE LEVEL .814818

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

*ww *eteeee *ee Sod WEENTEROTRTORE aewe w - L4
1 CONSTANT 0 0 -4.284700 3.656719 -1.171734 2511784
2 LWMILES 17 O 1.308261 - 2456031 5.326731 -1135891E-04
3 LAVFARE 19 O -.2773415 .1021073 =2.716176 - 1118999€-01
b LGAS 21 & 1234886 .6114380E-01 2.0196462 -5308414E-01

MASS TRANSIT ADMINISTRATION, BALTIMORE, MD -- SYSTEM TOTAL Thu 09-21-1989

CONVERGENCE REACHED ON ITERATION 12

DEPENDENT VARIABLE 32 FUTRIPS

FROM  1986: 1 UNTIL  1988: &

TOTAL OBSERVATIONS 28 SKIPPED/MISSING 0

USABLE OBSERVATIONS 28  DEGREES OF FREEDOM 23

R**2 .81029931  RBAR**2 .777T30788

SSR .15865527E-01  SEE .26264149€-01

DURBIN-WATSON 2.15233871

o( 14)= 9.33534 SIGNIFICANCE LEVEL .808987

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL

e L 421424 ] e *e® L 22224 0424144 L i a4 ANV TRTNETRDR SVeTTeTeetetd
1 CONSTANT 1 O .2001158£-02 .2451S7SE-02  .816274 42T
2 N_FWMILE 2 0 .9932840 .1386751 7.162671 .2764487E-06
3 N_FAVFAR 3 0 -.4945899 .1454712 -3.399917 .2459021E-02
4 AR 4 1 -.4261379 1946146 -2.179373 .39799186-01
5  MASEAS 5 12 -.599%4563 .2498388 -2.399372 . 2691892 -01
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BROOME COUNTY DOT, BINGHAMTON, NEW YORK -- SYSTEM TOTAL Mon 08-28-1989
Note: Fare decrease 2/87 and peak period fare increase 1/88.

Appendix C

DEPENDENT VARIABLE 14  LUTRIPS
FROM  1985: 7 UNTIL  1988: 4
TOTAL OBSERVATIONS 34  SKIPPED/MISSING 0
USABLE OBSERVATIONS 34  DEGREES OF FREEDON 28
e S4LLTI61  RBAR®®2 93455582
ssR .20T2T244E-01 SEE .32583543€-01
DURBIN-WATSON 1.62694046
oC 15)=  12.7076 SIGNIFICANCE LEVEL .624871
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR - T-STATISTIC SIGNIF LEVEL
*aw *TeeTe ote ove - »
1  CONSTANT O O -8.316528 3.358539 -2.47623% - 1958890E-01
2 LWMILES 16 0 .8564042 .9631365E-01  8.891826 - 1203634€-08
3 LAVFARE 18 O -.7040280 .6428B706E-01 -10.95132 - 1247666€-10
& LEWPLO 21 & 1.799060 7349262 2.447946 - 2089388¢-01
5  LeAs 20 3 .2267076 AS57147 1.455917 . 1565376
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGMIF LEVEL
L 4 4 *EVTeeS *ee WEe hvetteRteee TETTOVTeeNeS eV tRtTeY SetettveRTeY
6  RKo 1 0 .9006541 .B3857486-01  10.74030 . 1944032E-10
APPALCART, BOONE, NC -- SYSTEM TOTAL Wed 10-04-1989
DEPENDENT VARIABLE 15  LUTRIPS
FROM  1985:10 UNTIL  1988: 5
TOTAL OBSERVATIONS 32  SKIPPED/MISSING 0
USABLE DBSERVATIONS 32  DEGREES OF FREEDON 27
Ree? 83741116  RBAR®*2 81332392
SSR 1.5908830 SEE .2%42mm
DURBIN-WATSON 1.62683846
oC 15)=  11.5711 SIGNIFICANCE LEVEL .711160
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*ew sevevee Lo BN L ) o *te *ew RSt teveRed RN EATeTETeS
1  CONSTANT 0 0 -19.46635 10.29761 -1.890376 694864 1E-01
2 LWILES 17 0 .3560326 -1842909 1.931906 .6392821€-01
3 LAVFARE 19 0 -.5283814 .9319885E-01 -5.669398 .5080957€-05
4  SKITRIPS 10 0 .7473281 ATIE72 4.349047 ANBBTE-03 ki bus 12/85-2/86=1
S  LEWPLO 22 3 5.385468 2.465714 2.184141 -37B1264E-01
NIAGARA FRONTIER TRANS AUTH, BUFFALO, WY -- SYSTEM TOTAL Thu 09-21-1989
CONVERGENCE REACHED ON ITERATION 25
DEPENDENT VARIABLE 32 FUTRIPS
FROM  1984:12 UNTIL  1987:10
TOTAL OBSERVATIONS 35  SKIPPED/MISSING 0
USABLE OBSERVATIONS 35  DEGREES OF FREEDON 30
Ree2 85954578  RBAR™*2 .84081855
SSR .44027453E-01  SEE .38309030¢-01
DURBIN-WATSON 2.08799195
QC 15)=  3.90400 SIGNIFICANCE LEVEL .998035
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
L4 4 LA 244447 L 2 1] [, 4 ] Laa 00040 ) L] *eveteeRTRed ettt Reed
1 CONSTANT 1 O -.2383917E-02 .1076806E-02 -2.213877 .3458213€-01
2 N_FWMILE 2 0 1.040585 .2037086 5.108203 - 1716263£-04
3  N_FAVFAR 3 0 -.5025439 .1539108 -3.265164 -2736278E-02
“ m & 1 -.9052168 1054444 -8.584776 - 1408601E-08
S  MASEAS 5 12 -.8205350 .2237953 -3.666453 -9463851E-03
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CHATTANOOGA AREA TRANSP AUTH, CHATTANOOGA, TN - SYSTEM TOTAL Thu 09-28-1989

DEPENDENT VARIABLE 14  LUTRIPS
FROM  1983:12 UNTIL  1987: 6
TOTAL OBSERVATIONS 43 SKIPPED/MISSING 0
USABLE OBSERVATIONS 43  DEGREES OF FREEDOM 37
Rve2 89513740  RBAR**2 88096678
ssk . 10268268 SEE .52680239 -01
DURBIN-WATSON 1.89808143
o( 18)=  13.4187 SIGNIFICANCE LEVEL .766123
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL
*ee aeTeeRe ot are oW L - - aw e
1 CONSTANT O O -.6857713 1.585005 - 4326620 66TTT18
2 LAVFARE 18 0 -.3410170 T1B1561E-01 -4.748509 .3060170¢-04
3 LWMILES 16 0 .9083531 . 1293876 7.020416 .3034561E-07
4 LGAS 20 & .4381379 1192262 3676847 T496TT3E-03
5 JuME 43 0 .6379124E-01  .2ST3OL0E-01  2.479217 JITBABL1E-01  peak cummy, Junes
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL
*ee TeeheNe [, . BN, ] TR TETRTRR o *ed L 4 2.2 222 ] L it 4222222331
6 mwO 1 0 .544189%9 . 1430860 3.803236 .51798426-03

SW OHIO REGIONAL TRAN. AUTH., CINCINNATI, OH -SYSTEM TOTAL Thu 09-28-1989
Note that only pesk fare increased in the observation period.

CONVERGENCE REACHED ON ITERATION 26

DEPENDENT VARIABLE 32  FUTRIPS

FROM 1984: 7 UNTIL 1987: 2

TOTAL OBSERVATIONS 32  SKIPPED/MISSING 0

USABLE OBSERVAT]IONS 32 DEGREES OF FREEDOM 26

R**2 .82820808  RBAR™*2 79517117

SsR .11425709%6-01  SEE .20963071E-01

DURBIN-WATSON 1.86480309

aC 15)=  10.0491 SIGNIFICANCE LEVEL .816642

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

E 2 1] SreTRew *hy L 4 2 ] reeTeTteeeed TNV EORRw ATV TRS WU TOeYS
1 N_FVHOR 1 0 1.009202 1120714 9.004999 .1793654€-08
2 NEAVEAR 2 0 -.4T24744 . 1643895 -2.87116 .T9T1295E-02
3 N_FAVPAR 3 3 -.2655963 . 1339684 -1.982529 .5808013€-01
4  N_FENPLO 4 O 1.638314 7230811 2.265741 .3202627€-01
5 M 5 1 -.6483990 2642322 -2.654847 . 1336399€-01
6 MASEAS 6 12 -.6914339 .2245109 -3.079734 4845499 -02

PINELLAS SUNCOAST, CLEARWATER, FL -- SYSTEM TOTAL Tue 08-29-1989

CONVERGENCE REACHED ON ITERATION 10

DEPENDENT VARIABLE 32  FUTRIPS

FROM  1985: 3 UNTIL  1987: 9

TOTAL OBSERVATIONS 31  SKIPPED/MISSING 0

USABLE OBSERVATIONS 31  DEGREES OF FREEDON 25

R**2 .TBI11B64B  RBAR**2 73742378

SSR .B2551512€-02  SEE .181715736-01

DURBIN-WATSON 1.82740271

aC 15)=  17.0833 SIGNIFICANCE LEVEL .313908

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

wew *eTTTRR »oe *ee TRV TTT TR TOETTRNRTReN L 4 04222424444 R L e a0 24244444
1 NFWMILE 1 0 1.199072 . 1082947 11.07231 .3758481E-08
2 NCFAVEAR 2 1 -.2526607 .646314TE-01  -3.906297 .6300093€-03
3 N_FAVFAR 3 3 -_2253775 .7062809E-01 -3.191046 .3798378€-02
4  N_FENPLO 4 1 1.283381 .6022256 2.131064 .4309936€-01
S NJFGAS 5 0 .1151262 .6161567E-01  1.868456 .7346105€-01
6 M 6 1 .4335103 .2045317 2.119526 .44 15139€-01
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DALLAS AREA RAPID TRANSIT, DALLAS, TX -- SYSTEM TOTAL Fri 09-29-1989

DEPENDENT VARIABLE 15 LUTRIPS

FROM 1985:10 UNTIL 1987: ¢

TOTAL OBSERVATIONS 24 SKIPPED/MISSING 0

USABLE OBSERVATIONS 24 DEGREES OF FREEDOM 21

Re**2 91664881 RBAR®**2 90871060

SSR 19776617E-01 SEE -30687842€-01

DURBIN-WATSON 1.76122261

Q( 12)= 18.4361 SIGNIFICANCE LEVEL .103077

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL

e R 422 44, e o9t et e oW e e
1 CONSTANT ©0 O 3.911968 1.473740 2.654450 - 1483086E-01
2 LVHOURS 16 0 .9299271 « 1343944 6.919388 . 7802270E-06
3 LAVFARE 19 O -.1341959 -T565T2BE-01 -1.773734% .9061038E-01

REGIONAL TRANSPORTATION DISTRICT, DENVER, CO -- SYSTEM TOTAL Thu 08-10-1989

CONVERGENCE REACHED ON ITERATION 18

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1986:12 WNTIL 1988: 4

TOTAL OBSERVATIONS 17 SKIPPED/MISSING 0

USABLE OBSERVATIONS 17 DEGREES OF FREEDOM 10

Rre2 95233384 RBAR**2 92373414

SSR «23514020E-02 SEE - 15334282E-01

DURBIN-WATSON 2.31116701

Q¢ B8)= 2.48777 SIGNIFICANCE LEVEL .962299

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR

cew Teveved "t wow TR ReY NN TR
1 CONSTANT 1 0 .2180658£-02 .5101370£-03
2 N_FWILE 2 0 .1862532 -267T556E-01
3 N_FAVFAR 3 0 -.5618114% -2727859€-01
4 N_FGAS & 3 T2 « 1770949€-01
5 AR 5 1 -.8658785 -2988350E-01
3 AR 6 2 -.78538%% - 1899856€E-01
7 MA_SEAS 7 12 -12.01261 6.089663

T-STATISTIC
ressveresens

4.274652
6.956088
-20.59532
10.00154
-28.97513
-461.339%1
-1.972623

SIGNIF LEVEL
CODOCTOODt

- 1625034€-02
«3918134E-04
.1610742€E-08
.1587313€-05
.5588236E-10
- 16437B4E- 11
. 7680888E-01

NORTRAN, DES PLAINES, IL

CONVERGENCE REACHED ON ITERATION 18
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1985: 6 UNTIL 1988: 1
TOTAL OBSERVATIONS 32 SKIPPED/MISSING 0
USABLE OBSERVATIONS 32 DEGREES OF FREEDOM rig
Re**2 . 76061387 RBAR**2 72514925
SSR .22155900€E-01 SEE -2B64L5922E-01
DURBIN-WATSON 1.80871028
QC 15)= 10.85629 SIGNIFICANCE LEVEL .762255
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR
*ee vy *h® *ey SETTTROTRETRNS VTN TRORTE
1 N_FWILE 1 0 .2393053 . 1090961
2 N_FAVFAR 2 3 -,1167303 .6682030E-01
3 N_FEMPLO 3 0 1.084957 -5669890
4 N_FEMPLO 4 1 1.17051% 5127809
5 MA S 1 -1.167786 - 7394538E-01

== SYSTEM TOTAL Mon 10-02-1989

T-STATISTIC
L

2.193528
-1.746928
1.913542
2.282678
-15.52208

SIGNIF LEVEL
ConotHoTRtea

-3705877€-01
.9201772€-01
.6633629€-01
-3054598E-01
-3718994E-08

Appendix C
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SEMTA, DETROIT, M1 -- SYSTEM TOTAL Mon 10-02-1989

DEPENDENT VARIABLE 16 LUTRIPS
FROM 1981: 7 UNTIL 1985: 6

TOTAL OBSERVATIONS 48 SKIPPED/M1SSING 0
USABLE OBSERVATIONS 48 DEGREES OF FREEDOM &b
R**2 92639149 RBAR®*2 92137273
SSR .85407805E-01 SEE -44057763E-01
DURBIN-WATSON 1.4B478249

Q( 18)= 41.0290 SIGNIFICANCE LEVEL .150842E-02

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL
o catseveneees  SERSSIESEREE

mmmm

1 CONSTANT O 0  4.B8959%7 5837010 8.387765 .1126889E-09
2 LWILES 18 0 .6269748 L4T46616E-01  13.20888 . 1984491E-16
3 LAVFARE 20 O -.2471996 . T768990E-01 -3.181875 .2683628E-02
4 STRIKE 11 0 -.2182493 L4913385E-01 -4.4461934 .S9372461E-04 strike 12/83=1

SUN METRO, EL PASO, TX -- SYSTEM TOTAL Non 10-02-1989

CONVERGENCE REACHED ON ITERATION 10
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1986: 2 UNTIL 1988: 4

TOTAL OBSERVATIONS 7 SKIPPED/MISSING o
USABLE OBSERVATIONS 27 DEGREES OF FREEDOM 21
R**2 .60004315 RBAR®*2 .50481533
SSR .68219635E-01 SEE .56996088E-01
DURBIN-WATSON 1.99459749
o( 13)=  9.54586 SIGNIFICANCE LEVEL .730582
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL
[ 1 1] L1124 4] e Swe sevetteRetRd sessteeTRReY STERTRRTTTEY SreTNETeNTEw
CONSTANT 1 0  .31921326-02 JTS7T1543E-02  .4215960 6776042
2 NFWILE 2 O 76674610 2635115 3.148685 -4B46655E-02
3 W_FAVFAR 3 0 - 29641322 .1157016 -2.542162 18964 11E-01
4 N_FEMPLO & 3 2.484201 1.484348 1.673597 . 1090415
5 N_FGAS 5 2 .2078270 .1312295 1.583691 . 1282087
6 AR 6 1 -.6814393 .2151293 -2.237907 -3619362E-01

LANE TRANSIT DISTRICT, EUGENE, OR -- SYSTEM TOTAL Tue 08-22-1989
NOTE: lwo fare incresses occured in the observation period

CONVERGENCE REACHED ON ITERATION 1%
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1986:11 UNTIL 1988: 3

TOTAL OBSERVATIONS 17 SKIPPED/MISSING 0

USABLE OBSERVATIONS 17 DEGREES OF FREEDOM 9

Ree2 9099071  RBAR™*2 .E3983491

ssk .14854358E-02  SEE .12847117E-01

DURBIN-WATSON 2.16076592

o B8)= 6.51759 SIGNIFICANCE LEVEL .589457 :

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

e *eeeeed e oo TRTTTTROTNES TN ETTOTRR SN TERTTRS HETTRCTARETR
1 COMSTANT 1 0 -.1329802E-01 .2B91664E-02 -4.598744 . 129283702
2 N_FVHOUR 2 0 .5849499 .9045601E-01  6.466678 .1158641E-03
3 W_FVHOUR 3 1 .2000057 9T32660E-01  2.054995 . 7004534E-01
4 N_FAVFAR & 0 -, 1844477 .9TB2900E-01 -1.885409 .9200837E-01
] N_FEWPLO 5 O 2.983207 5522666 5.401948 -4319084E-03
é N_FGAS 6 3 .2679025 .5916571E-01  4.528003 .1430290E-02
7 WFREEFA 7 O .4B56280E-01 .1652384E-01 2.938933 _1651482E-01 free fare, August=!
8 AR g8 1 -.6359163 .2380369 -2.671503 .2555942€-01
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CITY OF EVERETYT TRANSIT, EVERETY, WA -- SYSTEM TOTAL Tue 10-03-1989

Appendix C

CONVERGENCE REACHED ON ITERATION 17

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1982: 9 UNTIL 1985: 6

TOTAL OBSERVATIONS 34 SKIPPED/RISSING 0

USABLE OBSERVATIONS 3% DEGREES OF FREEDOM 29

Ree2 56747991 RBAR®*2 50782197

SSR 1.1803392 SEE 20174576

DURBIN-WATSON 2.24720249

QC 15)= 16.0365 SIGNIFICANCE LEVEL .379627

0. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

> SeeteRe *ee wee e -
1 CONSTANT 1 0 .281207BE-02 .1489032E-01 .1888527 8515237
2 NFWMILE 2 0 1.167383 4776416 2.4645500 «2077148E-01
3 I:FAVFAR 3 0 -..2920%1 2361292 -1.818001 - T940852€-01
4 AR & 1 -.358513 - 1526158 -2.349117 -2584150E-01
5 MA_SEAS 5 12 -.7384232 2695802 -2.739159 - 1042368E -01

MASS TRANSPORTATION AUTHORITY, FLINT, MI -- SYSTEM TOTAL Tue 10-03-1989

DEPENDENT VARIABLE 14 LUTRIPS

FROM 1984: 7 UNTIL 1988: 1

TOTAL OBSERVATIONS 43 SKIPPED/MISSING L]

USABLE OBSERVATIONS &3 DEGREES OF FREEDOM 37

R**2 88466633 RBAR®*2 .86908070

SSR .99311472E-01 SEE .51808241E-01

DURBIN-WATSON 1.59164647

QC 18)= 32.1316 SIGNIFICANCE LEVEL .212115€-01

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL

*or reeRRee *e Sve VPR TOEVNNTDY ®*  eYveveveRtee L
1 CONSTANT © O -.3387878 2.798530 -. 1210592 9042992
2 LWILES 16 0 .6179540 .1081416 5.714304 «1534373E-05
3 LAVFARE 18 0 -.5853808 - 1963050 -2.981996 -.5042832€-02
4 LEMPLO 21 0 6018511 4422106 1.361006 1817443
5 LGAS 20 & . 3141588 1476329 2.127™72 -4006554E-01

¥O. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

*ee *OTSTYR *e [, 1] aretetTteete® TR TTERRSR FRTTRTTOTNTRNY AR RTeY
[ RKO 1 0 .6406330 .1301138 4£.923636 < 1785985E-04

FRESNO TRANSIT, FRESNO, CA -- SYSTEM TOTAL Mon 08-14-1989

CONVERGENCE REACHED ON ITERATION 10

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1985: 2 UNTIL 1987: 6

TOTAL OBSERVATIONS 29 SKIPPED/MISSING 0

USABLE OBSERVATIONS 29 DEGREES OF FREEDOM 23

Re®2 78847797 RBAR®*2 - 76249492

SSR .18768547E-01 SEE .28566130€-01

DURBIN-WATSON 2.00856254

o )= 10.0978 SIGNIFICANCE LEVEL .754996

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC  SIGNIF LEVEL

R 4 4 ] TRTTOWe *Re eve OO TTRTRROD *eeveteTEVeR OO RTeN RN
1 CONSTANT 1 0 .1270011E-02 .20040656-02 .6337175 5325174
2 N_FWMILE 2 0 .6313597 . 1637661 3.855253 -8053527e-03
3 N_FAVFAR 3 0 -.3114969 62397T2BE-01 -4.992155 4 756309E-04
4 N_FEMPLO & & 1.470020 4270108 3.442582 -2217192E-02
5 AR 5 1 -1.059056 1549733 -6.833795 <S761889€-06
é AR 6 2 -.7687962 . 1557530 -4 .935995 «546T286E -04
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FORT WAYNE PUBLIC TRANSPORTATION CORPORATION -- SYSTEM TOTAL Tue 08-22-1989
NOTE that is this is a fare decrease

DEPENDENT VARIABLE 14 LUTRIPS
FROM 1985: 6 UNTIL 1987:12

TOTAL OBSERVATIONS 31  SKIPPED/MISSING 0

USABLE DBSERVATIONS 31  DEGREES OF FREEDON 28

Ree2 .90270800  RBAR™*2 .89575857

SsR .53547358E-01  SEE .43731060€-01

DURBIN-WATSON 1.80537975

Q¢ 15)=  15.3213 SIGNIFICANCE LEVEL .428532

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*ow TR ate e¥w *ow L *e L
1  CONSTANT O O 5.316005 .7115395 7.471131 .3883927E-07
2 LWILES 16 O .5517875 .66451446-01  8.303620 .4912728E-08
3 LAVEARE 18 5 -.1160577 .6538481E-01 -1.7749% .B67T219E-01
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GRAND RAPIDS AREA TRANSIT AUTH, GRAND RAPIDS, MI -- SYSTEM TOTAL Tue 08-29-1989

CONVERGENCE REACHED ON ITERATION 9
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1985: 1 UNTIL 1987: 7

TOTAL OBSERVATIONS 31 SKIPPED/MISSING 0
USABLE OBSERVATIONS 31  DEGREES OF FREEDOM 26
R**2 .B6195726  RBAR**2 .84071989
SSR .36240849E-01 SEE .37334684E-01
DURBIN-WATSON 1.98512019
QC 15)=  13.0426 SIGNIFICANCE LEVEL .599008
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*ew SeeRwewY *e® RN oW L AT TEINY TN TeeY
1 CONSTANT 1 O -.425B731E-03 .4548501E-02 -.9362933E-01  .9261214

2  N_FWILE 2 0 .7659336 . 1359957 5.632042 -6393642E-05
3 N_FAVFAR 3 0 -.4304%5 .6264050E-01 -6.894475 .2553956€-06
&  N_FGAS 4 3 .1049703 .6983031E-01  1.503220 . 1648328

5 AR S 1 -.4853606 1769196 -2.743397 . 1086762€-01

GRAND RAPIDS AREA TRANSIT AUTH, GRAND RAPIDS, MI -- PEAK PERIOD Tue 08-29-1989

CONVERGENCE REACHED ON ITERATION 10
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1985: 1 UNTIL 1987: 7

TOTAL OBSERVATIONS 3 SKIPPED/MISSING 0
USABLE OBSERVATIONS 31  DEGREES OF FREEDOM 26
Rv"2 82945482  RBAR**2 .80321711
SSR .273438756-01  SEE .32429732€-01
DURBIN-WATSON 1.86958807
aC 15)=  11.6091 SIGNIFICANCE LEVEL .708341
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL
L 2 4 *eeereRd ot Sew TN TNNTe TSt eeeew ettt tdeeRd TN ReTeR
1 CONSTANT 1 O .9235601E-03 .4263173E-02 .2166368 .8301823

2  N_FWMILE 2 0 8447388 1319465 6.402129 .8797003€-06
3 NFAVPAR 3 0 -.1910926 .6324671E-01 -3.02138% .5587348€-02
4  NFGAS 4 3 .1041211 .61951526-01  1.680687 .1048004

S AR 5 1 -.3780691 .1871842 -2.019770 .5382457€-01
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GRAND RAPIDS AREA TRANSIT AUTH, GRAND RAPIDS, M! -- OFF-PEAX PERIOD Tue 08-29-1989
CONVERGENCE REACHED ON ITERATION é

DEPENDENT VARIABLE 32 FUTRIPS
FROM 1984:10 UNTIL 1987: 7

TOTAL OBSERVATIONS 34 SKIPPED/MISSING 0
USABLE OBSERVATIONS 34 DEGREES OF FREEDOM 30
R**2 .80958656 RBAR™*2 - 79054521
SSR - 10441150 SEE -S89 7T3E-01
DURBIN-WATSON 2.18908522

Q( 15)= 9.50645 SIGNIFICANCE LEVEL .B49585

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC  SIGNIF LEVEL
oo teevees ews wwe &

1 CONSTANT 1 0 -.16370456-02 .6724772E-02 -.2434350 .8093254

2 N_FWILE 2 0 .7962177 - 1646208 4.836676 -3693567E-04
3 N_FAVFAR 3 0 -.5331329 6B3TBSTE-01 -7.796772 - 1063324E-07
4 AR & 1 -.5100564 .1651837 -3.087812 -4316334€-02

WESTSIDE TRANSIT LINES, GRETNA, LA -- SYSTEM TOTAL Thu 08-10-1989

CONVERGENCE REACHED ON ITERATION 1
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1986: 5 UNTIL 1988: 5

TOTAL OBSERVATIONS 25 SKIPPED/MISSING 0
USABLE OBSERVATIONS 25  DEGREES OF FREEDON 20
Ree2 .80523260  RBAR**2 76627912
SSR .2TTT9166E-01  SEE .37268731E-01
DURBIN-WATSON 1.83658030
aC 12)=  12.4830 SIGNIFICANCE LEVEL .407712
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
L 4 1] ANSeTRNTY -l L, ”e Lod -
1 CONSTANT 1 O -.1924301E-03 .5631177E-02 -.3417227E-01 .973078S
2 N_FWILE 2 0 8511188 .1692615 5.028425 .6438542E-04
3 N_FAVFAR 3 0 -.3535910 1162110 -3.095946 .5697006€ -02
&  NFEMPLO & 1 1.811981 1.101910 1.644399 1157213
S AR S 1 -.35432% 2325491 -1.523650 .1432529

HONOLULU DOT SERVICES, HONOLULU, Ml -- SYSTEM TOTAL Tue 10-03-1989

CONVERGENCE REACHED ON ITERATION 24
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1983: 7 UNTIL 1986: S

TOTAL OBSERVATIONS 35 SK1PPED/MISSING 0

USABLE OBSERVATIONS 35 DEGREES OF FREEDOM 30

R**2 -81975018 RBAR**2 - 79571687

SSR .47078709€-02 SEE -12527132E-01

DURBIN-WATSON 1.93489623

Q¢ 15)= 11.2228 SIGNIFICANCE LEVEL .736648

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

en CRLCERE BRN  WEE  CELTATRNTERT ANRRRTENANET CENENATRNENT  SOSTTARREERW
1 CONSTANT 1 0 -.5042B44E-03 .1773415E-02 -.2843579 . 7780898
2 N_FWMILE 2 0 .7230039 -8257083E-01 8.756166 9171895€-09
3 N_FAVFAR 3 0 -.6520076 .1088353 -5.990773 -1430708¢-05
4 MA_SEAS 6 12 -.5114261 «2490503 -2.053505 .4883053€-01
-] MA_SEAS S 26 .7662790 4417924 1.734478 -9309905E-01
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KANSAS CITY AREA TRAN. AUTH, KANSAS CITY, MO -- SYSTEM TOTAL Tue 10-03-1989

DEPENDENT VARIABLE 14 LUTRIPS
FROM 1981: 4 UNTIL 1984:12

TOTAL OBSERVATIONS 45 SKIPPED/MISSING 0
USABLE OBSERVATIONS &5 DEGREES OF FREEDOM 40
R**2 .93032295 RBAR®*2 .92335525
SSR .80816853E-01 SEE -6494909TE-01
DURBIN-WATSON 1.92617375

Q( 18)= 13.9430 SIGNIFICANCE LEVEL .732799

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGMIF LEVEL

"ee eseesse wEe eww  AreRERRRERERT @ oo » e
1 CONSTANT 0 0 7.523322 1.772390 4.264732 - 1263293 -03
2 LWMILES 15 0 .3071097 . 14626719 2.155580 -3718793E-01
3 LAVFARE 17 0 -.5110148 . 1182209 -4 .322540 -99L33I90E-04
4 LGAS 19 2 .4264952 - 1476030 2.889475 .6204225€-02

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

*oe TEheePY *et waw *e *eew serrtvetYee BTETENETRERY
5 RHO 1 0 .4019595 .1502974 2.674427 -1078898€-01

RED ROSE TRANSIT AUTHORITY, LANCASTER, PA -- SYSTEM TOTAL Thu 08-17-1989

CONVERGENCE REACHED ON ITERATION 10
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1984: § UNTIL 1987: 6

TOTAL OBSERVATIONS 34  SKIPPED/MISSING 0

USABLE OBSERVATIONS 34  DEGREES OF FREEDON 30

Re*2 81249161 RBAR**2 79374077

SSR .23096793E-01 SEE 2774694 TE-01

DURBIN-WATSON 1.74721056

o 15)=  8.26274 SIGNIFICANCE LEVEL .912817

NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

[ 1 1] Laaaa iy e e T TwETeTe BTSN eR BTN TERe T TTTRTRe
1 N_FWILE 1 0 .6755340 .1348118 5.010939 .2258809€-04
2 N_FAVEAR 2 O -.4276713 .1453370 -2.942617 .6223506€-02
3 WFEMPLO 3 1 1.124706 7663964 1.467526 . 1526397
& om 4 1 -.6408853 . 1676768 -3.822147 .6210257E-03

LINCOLN TRANSPORTATION SYSTEM, LINCOLN, NE -- SYSTEM TOTAL Wed 10-04-1989

COMVERGENCE REACHED ON ITERATION 15
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1984: 2 UNTIL 1986: 8

TOTAL OBSERVATIONS N SKIPPED/MISSING 0

USABLE OBSERVATIONS N DEGREES OF FREEDOM 26

Re*2 -61008044 RBAR**2 -55009281

SSR -10513504 SEE .63589741€-01

DURBIN-WATSON 2.24209281

Q¢ 15)= 9.87357 SIGNIFICANCE LEVEL .827616

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

L 42 *eTeNeed *Nt ewt TRCTTTTETTTE SETTTETTRTER TN ATTETER AT TTTEARNNNY
1 CONSTANT 1 0 -.77B9331E-02 .6617492E-02 -1.177082 . 2498264
2 N_FWMILE 2 3 .623892¢9 .2001503 3. 1122 .4420729E-02
3 N_FAVFAR 3 0 -.5000035 -1532535 -3.262592 -3083597€-02
4 N_FGAS & 3 .2480285 .1330360 1.864371 - 7T359769€-01
5 AR 5 1 -.7504399 - 1769400 ~4.241211 .2486388E-03
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SOUTHERN CALIFORNIA RAPID TRAN DIST, LOS ANGELES, CA -- SYSTEM TOTAL Mon 09-11-1989

DEPENDENT VARIABLE 14
FROM 1983: 8 UNTIL
TOTAL OBSERVATIONS &7
USABLE OBSERVATIONS &7
R**2 87676216
SSR -2ST3T96TE-01
DURBIN-WATSON 2.05625536
Q 18)= 19.3316
NO. LABEL VAR LAG
oo ferreee wes  wew
1 CONSTANT O O
2 LWILES 16 O
3 LAVFARE 18 O
NO. LABEL VAR LAG
*he *heeetw [, 1] aew
4 RHO 1 0

LUTRIPS
1987: 6
SKIPPED/MISSING 0
DEGREES OF FREEDOM 43
RBAR™*2 .86816415
SEE .26465432E-01
SIGNIFICANCE LEVEL .371675
COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL
Tttt eTewee o * o L 2 4 2
3.659720 1.192244 3.069606 .3705104€ -02
.8395873 .75755626-01  11.08284 .3719023&-08
- . 23074% .3958631€-01 -5.829022 -6516533€-06
COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL
L g TR Re AV ENeT TR STt teeTeeR
8179273 T212228-01  11.32672 .3719005¢-08

Appendix C

SOUTHERN CALIFORNIA RAPID TRAN DIST, LOS ANGELES, CA --

CONVERGENCE REACHED ON ITERATION 8

DEPENDENT VARIABLE 32
FROM  1984: 8 UNTIL
TOTAL OBSERVATIONS 35
USABLE DBSERVATIONS 35
Re®*2 93047161
SSR . 15381300E-01
DURBIN-WATSON  2.00469104
Q( 15)= 18.6408

NO. LABEL VAR LAG
e SeReTeR e vow
1 CONSTANT 1 O
2 N_FWILE 2 O
3 N_FAVFAR 3 0O
6 MA_SEAS 4 12

FUTRIPS
1987: 6
SKIPPED/MISSING 0
DEGREES OF FREEDOM 3
RBAR**2 92374305
SEE .222T4L896E-01
SIGNIFICANCE LEVEL .230474
COEFFICIENT  STAND. ERROR
AT TANS TENETTT RO
-.5T6L157E-02 .2510352E-02
- 9963581 4596117E-01
-.2228124 -3648765E-01
-.5542739 - 1936661

PEAK PERIOD Mon 09-11-1989

T-STATISTIC

VT TCTENETER
-2.288187
21.67826
-6.106516
-2.862008

SIGNIF LEVEL

AT TR
.2910325€-01
.3718988E-08
.9102812E-06
- T4 TB265E-02

SOUTHERN CALIFORNIA RAPID TRAN DIST, LOS ANGELES, CA --

DEPENDENT VARIABLE 14 LUTRIPS
FROM 1983: 8 UNTIL 1987: 6
TOTAL OBSERVATIONS &7 SKIPPED/MISSING 0
USABLE OBSERVATIONS &7 DEGREES OF FREEDOM 43
Re®2 .81261896 RBAR**2 . 79933192
SSR -35934433E-01 SEE .28908208E-01
DURBIN-WATSON 2.08186301
¢ 18)= 10.1170 SIGNIFICANCE LEVEL .928020
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR
*ee teeTRwwd TR WeN VERTTNTTTENE AV ATRETRN
1 CONSTANT 0 O 4.975022 1.205591
2 LAVFARE 18 O -.2389947 -5126445E-01
3 LWVMILES 16 0 .7376344 . 7985360E-01
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR
sew TEERNBE WEE SR FESRERERNERR CRRRNTRIRERS
4 RHO 1 0 .8650368 -6811759€-01

OFFPEAX PER10D

T-STATISTIC

TRV TAREY
4.126623
-4.663815
9.23733

T-STATISTIC
oonoutotooTn

12.69917

Mon 09-11-1989

SIGNIF LEVEL
CUCOTOGTOTOn

-1657073E-03
-3019694E -04
-3728049€-08

SIGNIF LEVEL
arovTotanosa

-3718988E-08
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MADISON METRO, MADISON, Wl -- SYSTEM TOTAL Wed 10-04-1989

121

CONVERGENCE REACHED ON ITERATION 12

DEPENDENT VARIABLE 33 FUTRIPS

FROM 1986: 9 UNTIL 1988: &

TOTAL OBSERVATIONS 20 SKIPPED/MISSING 0

USABLE OBSERVATIONS 20 DEGREES OF FREEDOM 13

R**2 88666118 RBAR®™*2 83435095

SSR .83288667E-02 SEE .25311698E-01

DURBIN-WATSON 1.89187678

ol 10)=  9.17996 SIGNIFICANCE LEVEL .515115

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL

e aReeRed *ee [ 4 ¢ ] you -
1 CONSTANT 1 0 -.3766891E-02 .4012458E-02 -.9387989 3649502
2 N_FWILE 2 0 .9385385 - 1387656 6.763479 . 1335002€-04
3 N_FAVFAR 3 1 -.1792830 .T2B5601E-01 -2.460786 .2B62664E-01
4 N_FAVFAR & 3 -.2214139 SLTBLILE-01 -2.335976 -3615848E-01
5 N_FENPLO 5 2 2.679763 1.001074 2.676889 .1901322€-01
é N_FGAS 6 6 .1608918 .S57T66277E-01 2.790219 .1531371E-01
7 AR 7 1 -.6042668 2437048 -2.479422 .2764012E-01

NASHVILLE TRANSIT AUTHORITY, NASHVILLE, TN -- SYSTEM TOTAL Tue 08-15-1989

CONVERGENCE REACHED ON ITERATION 9

DEPENDENT VARIABLE 32 FUTRIPS

FROM  19B4: 6 UNTIL  1986: 9

TOTAL OBSERVATIONS 28 SKIPPED/MISSING 0

USABLE OBSERVATIONS 28  DEGREES OF FREEDOM 21

Rve2 .86060315  RBAR™®2 .82077548

SSR .26733427E-01  SEE .35679411E-01

DURBIN-WATSON 196578184

Q( 14)=  14.4658 SIGNIFICANCE LEVEL .415616

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

L 2 1] Rttt et wee Ly ] ettt Neede TR TTTTTES TR eTTTTRd
1 CONSTANT 1 0 -.5236523£-02 .27339126-02 -1.915396 .69159582-01
2 NFWILE 2 0 .6926982 1663754 4.163466 .4395489€-03
3 NFAVEAR 3 1 -.2613439 .7429501E-01 -3.248453 .3845217E-02
& WFAVFAR & 2 -.2852204 .T383366E-01 -3.863013 .9010143¢-03
S NFGAS 5 5 .2963903 .9118093E-01  3.250573 .3826290€-02
6 AR 6 1 -1.142275 .2118931 -5.390805 .2396733¢-04
7 M 7 2 -.493T2 .2116393 -1.650791 . 1136585

N. SAN DIEGO CO. TRAN. DIST., OCEANSIDE, CA -- SYSTEM TOTAL Fri 08-11-1989

DEPENDENT VARIABLE 15 LUTRIPS
FROM 1984: 8 UNTIL 1987: 6 -
TOTAL OBSERVATIONS 35 SKIPPED/MISSING 0
USABLE OBSERVATIONS 35 DEGREES OF FREEDOM 29
Ree2 . 72970273 RBAR™*2 68309975
SSR .224B0253E-01 SEE -27842075€E-01
DURBIN-WATSON 1.76067680
QC 15)= 11.5198 SIGNIFICANCE LEVEL .714953
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR
e L S T R e L I
1 CONSTANT O 0  .5496049 1.799100
2 LWMILES 17 O .B575048 .1271984
3 LAVFARE 19 0 -.3503479 . 1327729
4 LGAS 21 0 .2198458 -8640882E-01
5 MONTH 10 O -.3519307E-02 .16014B5E-02
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR
ree eretded *hE Wee TNCTtTreeted OO ETRRNNE
6 RHO 1 0 .5854476 . 1565884

T-STATISTIC

T TRee
.3054888
6.761476
-2.638701
2.544252
-2.197525

T-STATISTIC

3.738768

SIGNIF LEVEL
TOTOVERNNANTE

.7621760

.2168115€-06

-1324779€-01

.1653742€-01

.3612053€-01 Jan=1,Feb=2,...,Dec=12

SIGNIF LEVEL

TR T AT VRTS

.8091649€-03
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OSHKOSH TRANSIT SYSTEM, OSHKOSH, WI -- SYSTEM TOTAL Wed 08-23-1989
CONVERGEMCE REACHED ON ITERATION 19

DEPENDENT VARIABLE 32 FUTRIPS
FROM 1985: 8 UNTIL 1987:12

TOTAL OBSERVATIONS 29  SKIPPED/MISSING 0

USABLE OBSERVATIONS 29  DEGREES OF FREEDOM 2

R**2 87630114 RBAR®*2 85568466

SSR .60997057E-01 SEE .50413729€-01

DURBIN-WATSON 1.86196989

o %)= 16.6207 SIGNIFICANCE LEVEL .276954

NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR ' T-STATISTIC SIGNIF LEVEL

L 4 ] L] o Se® w o - -l
1 N_FWMILE 1 O 1.973688 AT59964 11.21449 .5008617€- 10
2 N_FAVFAR 2 1 -.1670763 .5410897€-01 -3.087774 -5032938E-02
3 N_FGAS 3 4 3586584 1309175 2.739575 -1141911E-01
4 N_FENPLO & S5 2.812965 1.725270 1.6304649 1160621
5 AR 5 1 .2327362 .2088011 1.114631 2760464

PHOENIX TRANSIT SYTEM, PHOENIX, A2 -- SYSTEM TOTAL Fri 08-11-1989

CONVERGENCE REACHED ON ITERATION 12

DEPENDENT VARIABLE 30 FUTRIPS

FROM 1983:12 UNTIL 1986: 6

TOTAL OBSERVATIONS 31 SKIPPED/M1SSING 0

USABLE OBSERVATIONS 31 DEGREES OF FREEDOM 23

Ree2 71345289 RBAR**2 65614347

SSR .12894170 SEE .T1816905€-01

DURBIN-WATSON 1.86463570

QC 15)=  14.4995 SIGNIFICANCE LEVEL .488036

NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

> *eeTRed *et e cevtereteeed AATENNSENTRN TOOTT RNV TSY STreveeRT TR
1 CONSTANT 1 0 -.3987791E-02 .6053324E-02 -.6587770 .5160611
2 N_FWMILE 2 0 1.167478 ~2Th8464 4.247745 +2616654€-03
3 N_FAVFAR 3 0 -.3214516 AT3295 -1.855426 . 7536363€-D1
4 N_FGAS 4 2 .6537297 2799636 2.335052 .27B6725€-01
5 AR 5 1 -.8292858 1952131 -4.248105 .2614223€-03
6 AR 6 2 -.3311268 . 1978609 -1.673533 . 1066909

TRI-COUNTY METRO TRANSP DIST OF OREGON, PORTLAND, OR -- SYSTEM TOTAL Fri 09-15-1989

CONVERGENCE REACHED ON ITERATION %
DEPENDENT VARIABLE 36 FUTRIPS
FROM 1985: 3 UNTIL 1987: 8

TOTAL OBSERVATIONS 30  SKIPPED/MISSING 0
USABLE OBSERVATIONS 30  DEGREES OF FREEDOM 23
R**2 71467526  RBAR**2 64024269
SSR .28560222E-01  SEE .35238456€-01
DURBIN-WATSON 1.98926529
o 15)=  9.54905 SIGNIFICANCE LEVEL .847107
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*ew VAN NE *eR SN AETTTVRBRVES TR TOwR TN d STt wRed
1 CONSTANT 1 O .63502286-03 .4552501E-02 .1394838 .8902782
2 N_FWMILE 2 0 .4835178 .2061273 2.345724 .2798102€-01
3  N_FAVFAR 3 0 -.3867207 .B9B5849E-01 -4.303663 .2641550€-03
&  N_FEWPLO & 2 .9517976 6412509 1.484283 .1513105
5 NFGAS 5 & J32MiR . 1303966 2.514769 .1935259€-01
6 NFRAIL 6 0 -.3911133 . 1672190 -2.338929 .2839261E-01 light rail 9/86-8/87=1
7 M 7 1 -.5042564 912617 -2.636750 1474 239E-01 -
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TRI-COUNTY METRO TRANSP DIST OF OREGON, PORTLAND, OR -- PEAK PERIOD Fri

CONVERGENCE REACHED ON ITERATION 2
DEPENDENT VARIABLE 36  FUTRIPS
FROM  1985: 3 UNTIL  1987: 8
TOTAL OBSERVATIONS 30  SKIPPED/MISSING 0
USABLE OBSERVATIONS 30  DEGREES OF FREEDON 25
R**2 39790430  RBAR®®2 .30156899
SSR .6TTO1562E-01  SEE 5203904801
DURBIN-WATSON 2.37972089
aC 15)=  16.6927 SIGNIFICANCE LEVEL .337567
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
L 4 ] ateeeed e wee TEANTENROENNE
1 N_FWILE 1 0 .6796434 .2699918 1.776511
2 N_FAVFAR 2 0 -.1912452 .1089960 -1.754608
3 N_FRAIL 3 0 -.5231963 2116377 -2.472132
4 N_FENPLO & 2 1.279597 8929892 1.432937
5  NJFGAS 5 5 .3569661 .2269120 1.573148

123

09-15-1989

SIGNIF LEVEL

soNtToTTTTTY

.B7B2143E-01

-9157726E-01

.2058906E-01 tight rail 9/86-8/87=1
- 1642635

. 1282563

TRI-COUNTY METRO TRANSP DIST OF OREGON, PORTLAND, OR -- OFF PEAK Fri 09-15-1989

CONVERGENCE REACHED ON ITERATION 15
DEPENDENT VARIABLE 36 FUTRIPS
FROM 1985: 2 UNTIL 1987: 8
TOTAL OBSERVATIONS 31 SKIPPED/MISSING 0
USABLE OBSERVATIONS 31 DEGREES OF FREEDOM a3
Re*e2 .66788852 RBAR™*2 .56681112
SSR .42570137€-01 SEE .43021803€-01
DURBIN-WATSON 2.27751802
o( 15)= 16,1181 SIGNIFICANCE LEVEL .374246
NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC
*ve oevenee o e  SAReR o  evewRTeTRTRRS i a4 a4 424444 ]
1 CONSTANT 1 0  .1435330E-02 .3238352E-02 .4432285
2 N_FWILE 2 0 .7155144 . 1330741 5.376811
3 N_FAVFAR 3 0 -.4292495 - 1164127 -3.687309
4 N_FRAIL 4 0 -.3980526 . 1894896 -2.100657
5 N_FGAS S & .5279080 - 1614506 3.269781
6 N_FEMPLO 6 2 .6B22414 .3094016 2.205035
7 MA_SEAS 7 12 -1.008915 -2600639 -4.202692
8 MA_SEAS 8 264 -1.467476 .6163910 -2.380755

SIGNIF LEVEL
e renetoarasaa ]

66174616

. 1841146€-04

.1218760E-02

4683435E-01 light rail 9/86-8/87s1
«33661464E-02

37721126-01

.3397522€-03

-2594468E-01

GREATER RICHMOND TRANSIT CO., RICHMOND, VA -- SYSTEM TOTAL Tue 08-15-1989

COMVERGENCE REACHED ON ITERATION 2
DEPENDENT VARIABLE 32  FUTRIPS
FROM  1985: 2 UNTIL  1987:10
TOTAL OBSERVATIONS 33 SKIPPED/MISSING 0
USABLE OBSERVATIONS 33 DEGREES OF FREEDOMN 28
R*e2 .73945788  RBAR**2 . 70223758
SSR .2716T596E-01  SEE .31149178€-01
DURBIN-WATSON 2.58123244
aC 15)=  B.96457 SIGNIFICANCE LEVEL .879363
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
*ew L il 11 *AR  Sew TENENRTONRTOY atrdete et L4440y
1 CONSTANT 1 0 -.2659812E-02 .5522973E-02 -.4815906
2 N_FWILE 2 0 1.294612 1732256 7.473561
3 N_FAVFAR 3 0 -.6235998 .2561804 -2.434222
& N_FGAS 4 2 .1636779 .B35897SE-01  1.958110
S  N_FEMPLO S5 1 1.672895 .8234563 2.031553

SIGNIF LEVEL

TN TRVEDON
-6338395
-3860064€-07
.2155541E-01
.6024877E-01
-5178733€-01
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RIVERSIDE TRANSIT AGENCY, RIVERSIDE, CA -- SYSTEM TOTAL Tue 08-15-1989
CONVERGENCE REACHED ON ITERATION 7

DEPENDENT VARIABLE 32 FUTRIPS
FROM 1986: 3 UNTIL 1988: 4

TOTAL OBSERVATIONS 26 SKIPPED/MISSING 0

USABLE OBSERVATIONS 26  DEGREES OF FREEDON 21

RT*2 80235702  RBAR*®2 76471074

SSR .975983736-02  SEE .21558158E-01

DURBIN-WATSON 2.05097783

o 13)= 8.88017 SIGNIFICANCE LEVEL .781932

0. LABEL VAR LAG  COEFFICIENT STAND. ERROR - T-STATISTIC  SIGNIF LEVEL

e L et S9f  CORMORCETERY STV ORD
1 CONSTANT 1 0 .4OBS6OLE-02 .237B220E-02 2.096817 4829765€-01
2 NFWILE 2 0 .B196769 . 1049025 7.813702 . 1236208E-06
3 N_FAVFAR 3 0 -.1194350 -3012278E-01 -3.964940 . 706474 1E-03
4 NWFENPLO & 0 .9075490 4875361 1.861501 .7673001E-01
5 AR S 1 -.8477486 .1288137 -6.581197 .1621712E-05

SACRAMENTO REGIONAL TRANSIT DISTRICT, SACRAMENTO, CA -- SYSTEM TOTAL Tue 09-12-1989

CONVERGENCE REACHED ON ITERATION 21
DEPENDENT VARIABLE 36 FUTRIPS
FROM 1985: 4 UNTIL 1988: 1

TOTAL OBSERVATIONS 34 SKIPPED/MISSING 0
USABLE OBSERVATIONS 3% DEGREES OF FREEDOM ri4
Re®2 .86837010 RBAR®*2 .83911901
SSR -31376090€-01 SEE -34089257€-01
DURBIN-WATSON 2.04283773

o 15)= 17.2122 SIGNIFICANCE LEVEL .306337

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL
ove SWEEERE  GWE  WNE  ACLEILRINNE SECRRNNELERT AGRENSRNEINT BTN EERRONE

1 CONSTANT 1 0 .5B33775E-04 .9964058E-03  .SB54818E-01  .9537432

2 N_FWILE 2 0 1.050355 .6084927E-01  17.26159 -3718988E-08

3 N_FAVFAR 3 0 -.1615935 -21315426-01 -7.581060 -4102953E-07

3 N_FGAS 4 0 .2181660 -5484441E-01  3.977908 4691949E-03

5 N_FRAIL 5 0 -.17104806-01 .3251529€-02 -5.260539 .1513683E-04 light rail 3/87-1/88=1
6 AR 6 1 -.7834186 -1362808 =5.748564 4117814E-05

7 MA_SEAS 7 12 -1.697819 .2533853 -6.700542 -3454379E-06

SACRAMENTO REGIONAL TRANSIT DISTRICT, SACRAMENTO, CA -- PEAK PERIOD Tue 09-12-1989

CONVERGENCE REACHED ON ITERATION 12
DEPENDENTY VARIABLE 36 FUTRIPS
FROM 1985: 4 UNTIL 1988: 1

TOTAL OBSERVATIONS 34  SKIPPED/MISSING 0
USABLE OBSERVATIONS 34  DEGREES OF FREEDON 27
R**2 .86481068  RBAR™*2 .83476860
SSR .39936326E-01  SEE .38459370€-01
DURBIN-WATSON 1.87597554
a( 15)= B8.85472 SIGNIFICANCE LEVEL .BB84990
NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL
e FTETROR *o® AN TNV TERES FreveteTteee TR TeNR TR ROTNTD
1 CONSTANT 1 0 .9706962E-03 .1771554E-02  .5479349 .5882384
2 N_FWMILE 2 0 .7064316 .S5712856-01  12.67987 .3719684€-08
3 NFAVEAR 3 0 -.2231231 .3B19841E-01 -5.841163 .3222277E-05
4  NFGAS & O 1374687 9643T06E-01  1.425475 .1654789
5  NFRAIL 5 0 -.1492623E-01 .3129134E-02 -4.769445 .56602486-04 Light rail 3/87-1/88=1
6 AR 6 1 -.6371876 1499791 -4.248509 .2286732¢-03 :
7 MASEAS 7 12 -1.215486 1789578 -6.792015 .2740558¢-06
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SACRAMENTO REGIONAL TRANSIT DISTRICT, SACRAMENTO, CA -- OFFPEAK PERIOD

CONVERGENCE REACHED ON ITERATION 1%
DEPENDENT VARIABLE 36 FUTRIPS
FROM 1985: 4 UNTIL 1988: 1

TOTAL OBSERVATIONS 34 SKIPPED/MISSING 0
USABLE OBSERVATIONS 34 DEGREES OF FREEDOM rig
R**2 - 72067664 RBAR®*2 -65860478
SSR .63883827€-01 SEE -68642242E-01
DURBIN-WATSON 1.86286804

Q¢ 15)=  15.9196 SIGNIFICANCE LEVEL .387415

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL

*ee  etveses SOt eAt STV RNORRRROR

-.1832295E-02  .21464175E-02 -.8545452

1 CONSTANT 1 0 .4003220
2 NFWILE 2 0 1.369814 1619143 8.460115 .8226102E-08
3 NFAVFAR 3 0 -.1295343 4T05T34E-01 -2.752690 . 1043688€-01
4 N_FGAS 4 0 .3458850 .1173580 2.947263 -6536037E-02
5 N_FRAIL 5 O -.1364141E-01  .4533971E-02 -3.008712 .5624245E-02 Light rail 3/87-1/88=1
6 AR 6 1 -.5471836 .1707933 -3.203776 -3466596E-02
7 MA_SEAS 7 12 -1.319061 2032595 -6.489544 .5924388¢-06

SAN DIEGO TRANSIT CORP., SAN DIEGO, CA -- SYSTEM TOTAL Mon 0B-14-1989

CONVERGENCE REACHED ON ITERATION 39

DEPENDENT VARIABLE 29 FUTRIPS

FROM  1986: 2 UNTIL  1988: &

TOTAL OBSERVATIONS 27 SKIPPED/MISSING 0

USABLE OBSERVATIONS 27 DEGREES OF FREEDOM 2

Re*2 71016094 RBAR**2 65746293

SSR .12562925E-01 SEE .23896486€-01

DURBIN-WATSON 1.71993002

QC 13)=  9.60684 SIGNIFICANCE LEVEL .725725

NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC  SIGNIF LEVEL

Ll 4] NOTEETR *eR Ly g T TTeTReR TR RR L4 a0 a4 204 0] TR TReed
1 N_FWMILE 1 O .4930783 . 1344882 3.666331 .1356087E-02
2 N_FAVFAR 2 0 -.2703127 .14661741 -1.849252 . 7790381E-01
3 N_FENPLO 3 0 4.851134 1.856817 2.612608 . 1589498E-01
4 A & 1 -.T296425 . 1563082 -4.667973 .1180616E-03
5 MA_SEAS 5 12 -1.237189 3055326 -4.049286 .5348458£-03

GOLDEN GATE BRIDGE, MIWAY & TRANSP DIST., SAN FRANCISCO, CA -- SYSTEM TOTAL Tue 08-29-1989

CONVERGENCE REACHED ON JTERATION 2
DEPENDENT VARIABLE 33 FUTRIPS
FROM 1983: 5 UNTIL 1985: 6

TOTAL OBSERVATIONS 26 SKIPPED/MISSING 0

USABLE OBSERVATIONS 26  DEGREES OF FREEDOM 22

Re*2 .89168243  RBAR"™*2 .87691186

SSR .9796434E-01  SEE . 29997299 -01

DURBIN-WATSON 1.86040870

aC 13)=  6.53918 SIGNIFICANCE LEVEL .924315

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
L 2 2] *TTewew *o *e Lo g 020404004 reeTreTeet e Lo a2 244441 VOO ETTER
1 CONSTANT 1 O -.27629206-02 .S9B7S63E-02 -.4614431 .6490107

2 NFWILE 2 0 1.128700 75236 9.604022 .2504890£-08
3 N_FAVFAR 3 0 -.1510069 .6618616E-01 -2.281548 .3255216€-01
4 NFEMPLO 4 1 2.151458 .6948190 3.096430 .5268900€-02
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GOLDEN GATE BRIDGE, HIWAY & TRANSP DIST., SAN FRANCISCO, CA -- PEAK PERIOD Tue 08-29-1989

CONVERGENCE REACHED ON ITERATION 13

Appendix C

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1983: 8 UNTIL 1985: 6

TOTAL OBSERVATIONS il SKIPPED/MISSING 0

USABLE OBSERVATIONS rad DEGREES OF FREEDOM 19

R**2 96489656 RBAR™™2 95935392

SSR 634 T3905E-02 SEE . 18277669E-01

DURBIN-WATSON 1.60362564

¢ 1)=  9.94104 SIGNIFICANCE LEVEL .535698

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

e aevtewe *ee *ee e L Ve
1 CONSTANT 1 0 .132467SE-02 .2049305E-02 .6464023 5257507
2 N FWILE 2 0 .8805526 .S5613451E-01  15.68647 -3721487€-08
3 N_FAVFAR 3 0 -.1394384 .4518116E-01 -3.086206 .6079108€-02
4 MA & 1 -.4960038 2385966 -2.082610 .5103952¢€-01

GOLDEN GATE BRIDGE, HIMAY & TRANSP DIST., SAN FRANCISCO, CA - OFF PEAK Tue 08-29-1989

CONVERGENCE REACHED ON ITERATION 2

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1983: 9 UNTIL 1985: 6

TOTAL OBSERVATIONS 22 SKIPPED/MISSING 0

USABLE OBSERVATIONS 22 DEGREES OF FREEDOM 19

R**2 .82159777 RBAR**2 .80281859

SSR -66649535E-01 SEE .59227276E-01

DURBIN-WATSON 2.00379296

Q¢ 11)= 5.43848 SIGNIFICANCE LEVEL .908089

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL

*ew L 224444 oee L 4 . T eeNeTeR TTTTTETTTTRN SOV RTRRERT WOV EN
] N_FWMILE 1 0 1.642253 5138405 3. 196037 +h7T56256E-02
2 N_FAVFAR 2 O -.3115261 .1198453 -2.599401 . 17607T1E-01
3 N_FEMPLO 3 1 4.252459 1.528591 2.781947 .1188148E-01

SANTA CLARA COUNTY TRANSIT, SAN JOSE, CA

CONVERGENCE REACHED ON ITERATION 2

-- SYSTEM TOTAL Tue 10-03-1989

DEPENDENT VARIABLE 29 FUTRIPS

FROM 1986: 5 UNTIL 1988: &4

TOTAL OBSERVATIONS r4 SKIPPED/MISSING 0

USABLE OBSERVATIONS 3 DEGREES OF FREEDOM 19

R**2 60296470 RBAR™*2 51937832

SSR -36717863E-01 SEE -43960426E-01

DURBIN-WATSON 2.20401175

( 12)= 7.12384 SIGNIFICANCE LEVEL .849322

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL

*ew reRevew e *he L s 422122202224 TR TTTRTNRY Laa 22204444014 ettt vetetee
1 CONSTANT 1 0 -.6352B830E-02 .9899031E-02 -.6417628 .52869464
2 N_FWILE 2 0 .B21469 2809672 2.923720 .8712120€-02
3 N_FAVFAR 3 0 -.4603714 .2122005 -2.169511 -4293429E-01
4 N_FEMPLO & 1 1.965586 1.282905 1.532916 1617791
S N_FGAS 5 3 .3611523 . 1585728 2.151393 -46452054E-01
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SARASOTA COUNTY AREA TRANSIT, SARASOTA, FL -- SYSTEM TOTAL Tue 08-15-1989

CONVERGENCE REACHED ON ITERATION 13

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1986: 1 UNTIL 1988: 5

TOTAL OBSERVATIONS o SKIPPED/MISSING 0

USABLE OBSERVATIONS 29 DEGREES OF FREEDOM 26

R**2 .T2765421 RBAR™*2 68226325

SSR .29544873E-01 SEE .35086128E-01

DURBIN-WATSON 2.12542344

QC )= 5.5792 SIGNIFICANCE LEVEL .976009

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

"o rerewed *er  wwe Lodd g b
1 CONSTANT 1 0 -.1136985E-02 .4959296E-02 -.2292634 .8206068
2 N FVMILE 2 0 .9204644 . 16859461 5.459647 - 1304259€-04
3 N_FAVFAR 3 0 -.214269% .B016757E-01 -2.672769 . 1331085 -01
4 N_FENPLO & 2 1.570097 .7381566 2.127051 .4389215€-01
] MA_SEAS S 12 -.46416T2 .2372085 -1.956789 .6210339€-01

SEATTLE METRO, SEATTLE, WA -- SYSTEM TOTAL Mon 08-14-1989

CONVERGENCE REACHED ON ITERATION 25

DEPENDENT VARIABLE 32 FUTRIPS

FROM 1984: & UNTIL 1987: 1

TOTAL OBSERVATIONS 3% SKIPPED/MISSING 0

USABLE OBSERVATIONS 3% DEGREES OF FREEDOM 29

R**2 87770517 RBAR®*2 .86083691

SSR .11072093E-01 SEE .19539608E - 01

DURBIN-WATSON 1.81384053

¢ 15)=  17.0125 SIGNIFICANCE LEVEL .318117

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

*we SRR ok el TR OOV PETEVTER L a4 s 02442442 Lt 4242422241
] CONSTANT 1 0 -.1331443E-02 .1490777E-02 -.8931203 31647
2 N_FVNOUR 2 0 1.0130682 9877407E-01 10.25635 .3756037E-08
3 N_FAVFAR 3 0 -.2658345 1130144 -2.352217 .2566231E-01
4 AR & 1 -.4796762 - 1739668 -2.757286 99TBI14E-02
5 MA_SEAS 5 12 -.6236649 .2105527 -2.962036 .6044207E-02

SOUTH BEND TRANSPO, SOUTH BEND, IN -- SYSTEM TOTAL Tue 08-15-189

CONVERGENCE REACHED ON ITERATION 9

DEPENDENT VARIABLE 32 ' FUTRIPS

FROM 1982: 3 UNTIL 1984:12

TOTAL OBSERVATIONS 3% SKIPPED/MISSING 0

USABLE OBSERVATIONS 3% DEGREES OF FREEDOM 29

R**2 . 70156537 RBAR**2 66040197

SSR 46230810501 SEE -38195552€E-01

DURBIN-WATSON 1.94689110

QC 15)=  20.579 SIGNIFICANCE LEVEL .150813

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC SIGNIF LEVEL

*we L 244 212 *o® L 4 4] VeV ERNTRY L s 2 i 222442241 Lad 4 a1 2214 TN ATRINE
1 N_FWILE 1 0 .7933388 . 1696839 4.675393 .6248503E-04
2 K_FAVFAR 2 0 -.2606330 .5688171E-01 -4.582018 .8093100£-04
3 N_FEMPLO 3 0 .5319538 -.3602213 1.476742 .1505227
4 N_FGAS & 1 .5248215 - 1353244 3.878248 .5562495€-03
5 MA 5 1 -.7633170 JATTT641 -4 .294471 .1789143E-03
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EAST VOLUSIA TRANSP. AUTH, SOUTH DAYTONA, FL - SYSTEM TOTAL Wed 10-04-1989

CONMVERGENCE REACHED ON ITERATION 11

Appendix C

DEPENDENT VARIABLE 32  FUTRIPS

FROM  1986: 2 UNTIL  1988: &

TOTAL OBSERVATIONS 27  SKIPPED/MISSING 0

USABLE OBSERVATIONS 27  DEGREES OF FREEDOM 21

R**2 .68571332  RBAR™2 .61088316

SSR .200916586-01  SEE .30931305€-01

DURBIN-WATSON 1.95555975

e¢ 13H= 14.3503 SIGNIFICANCE LEVEL .349643

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

*ee woeReRe "t wee ot Teretee STeeTeTTTeRTd T heeereted e eTRY
1  CONSTANT 1 O .31923538-02 .4538991E-02 .7033177 .4895827
2 N_FWILE 2 0 .7037336 714132 4.105480 .5049286E-03
3 NFAVFAR 3 0 -.4226760 . 1669284 -2.876748 .9027287¢-02
&  N_FEWPLO & 2 1.773135 .9830380 1.803730 .8563984E-01
5 NFGAS 5 0 .1492186 .BO858896-01  1.845420 . T912499€-01
6 AR 6 1 -.3367869 .2127807 -1.582789 1284145

SPOKANE TRANSIT AUTHORITY, SPOKANE, WA -- SYSTEM TOTAL Fri 09-15-1989

CONVERGENCE REACHED ON ITERATION 18

DEPENDENT VARIABLE 32  FUTRIPS

FROM  1983: 5 UNTIL  1985:12

TOTAL OBSERVATIONS 32  SKIPPED/MISSING 0

USABLE OBSERVATIONS 32  DEGREES OF FREEDOM 23

R**2 77088812  RBAR"*2 69119703

SSR .22883318€-01 SEE .31542461E-01

DURBIN-WATSON 2.10735091

o 15)=  22.1232 SIGNIFICANCE LEVEL .104614

NO.  LABEL VAR LAG  COEFFICIENT STAMD. ERROR  T-STATISTIC SIGNIF LEVEL

*ed NeeROTS R L 4 4 DO TRTTTRR L 4 22 4044 44457 - 4
1 CONSTANT 1 O .98BO745E-03 .1179596E-02 .B376378 .4108543
2 N_FWILE 2 0 .1331804 .32500096-01 4.097848 .44109206-03
3 NJFWMILE 3 1 .1085543 .3106237E-01  3.494722 .1953026€-02
&  N_FAVFAR & O -.2953405 S194791E-01 -5.685322 .B670886€-05
S DFAVFAR S 1 .4391807 . 1395085 3.148057 .4503256€-02
6 N_FGAS 6 1 .2165135 954TS29E-01  2.267744 .3305087€-01
7 M 7 1 -1.052031 .1336678 -7.870493 .6040600-07
Y 8 2 -.7465142 1392304 -5.361372 .1912250€-04
9  MASEAS 9 12 -1.140421 1963927 -5.806836 6461127E-05

SPOKANE TRANSIT AUTHORITY, SPOKANE, WA -- PEAK PERIOD Fri 09-15-1989

CONVERGENCE REACHED ON ITERATION 10

DEPENDENT VARIABLE 32  FUTRIPS

FROM  1983: 5 UNTIL  1985:12

TOTAL OBSERVATIONS 32  SKIPPED/MISSING 0

USABLE OBSERVATIONS 32  DEGREES OF FREEDOM 28

R**2 62750576  RBAR™*2 58759566

SSR .38600082E-01 SEE .37129158¢-01

DURBIN-WATSON 1.95290606

a( 15)=  9.46188 SIGNIFICANCE LEVEL .852156

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

*re *TNeTeR "oy wew ATVTT NN ORE hevtteVeVew FRTTTTTTTOeN LA a4 42404444 ]
1 N_FWILE 1 0 .1880763 T526660E-01  2.499466 .1857368€-01
2 N_FAVPAR 2 3 -.321873% T691B18E-01 -4.184620 .2556620€-03
3 NFGAS 3 1 3793499 1277919 2.968498 .6071789€-02
& MW 4 1 -.7776011 . 1689057 -4.603757 .B188961E-04
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SPOKANE TRANSIT AUTH, SPOKANE, WA -- OFF-PEAK PERIOD Fri 09-15-1989

CONVERGENCE REACHED ON ITERATION 15
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1983: 3 UNTIL 1985:12

TOTAL OBSERVATIONS 34  SKIPPED/MISSING 0

USABLE OBSERVATIONS 34  DEGREES OF FREEDOM 27

R**2 70922640  RBAR™®2 64461004

SSR .43240845€-01  SEE .40018905€-01

DURBIN-WATSON 2.00228849

a( 15)=  19.3351 SIGNIFICANCE LEVEL .198949

NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*ee *oTeeeR aRt oW e TR
1 CONSTANT 1 O -.29349B6E-02 .3740533E-02 -.7846438 4394930

2 W FWILE 2 0 .1902672 4ETTRELE-01  4.066090 .3715009€-03
3 N_FVMILE 3 1 133777 .4E33009€-01  2.767896 . 1006654€-01
&  N_FAVFAR & O -.2785735 .B926468E-01 -3.120759 .4264658E-02
S  N_FAVFAR 5 1 -.4633721 .84L07T1E-01 -5.362624 1151626€-04
6 NFGAS 6 1 .4200288 . 1895739 2.215644 .3533583¢-01
7  MASEAS T 12 -.9616361 .1882686 -5.107788 .2280289%-04

CITY UTILITIES TRANSP. DEPT, SPRINGFIELD, MO -- SYSTEM TOTAL Tue 10-03-1989

CONVERGENCE REACHED ON ITERATION 22
DEPENDENT VARIABLE 32 FUTRIPS
FROM 1982: 5 UNTIL 1984212

TOTAL OBSERVATIONS 32 SKIPPED/MISSING 0
USABLE DBSERVATIONS 32  DEGREES OF FREEDOM 25

R**2 71540778 RBAR**2 64710564

SSR .28086772E-01  SEE .33518217€-01
DURBIN-WATSON 2.06437240
o 15)= 6.79386 SIGNIFICANCE LEVEL .963119
NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL
*e® TreeTeE L 4 B RSO DY SEETNTETARRY RN TTTR TN TTeTTeTE
1 CONSTANT 1 0 -.1349834E-02 .4226230E-02 -.3193945 .7520811

2  N_FWMILE 2 0 .2255022 < 1455456 1.549359 . 1338631

3  N_FAVFAR 3 0 -.4806515 .5605466€-01 -8.574693 .1020181€-07
& NFGAS 4 1 aMTRT 95421386-01  1.726315 .9663071E-01
S AR S 1 -.3522406 . 1746053 -2.017354 .5451584€- 01
6 AR 6 2 -.5510612 . 1750632 -3.147785 .4221950E-02
7  WASEAS 7 12 .5579408 . 2410237 2.314879 .2911822€-01

CENTRE AREA TRANSP. AUTH, STATE COLLEGE, PA -- SYSTEM TOTAL Wed 10-04-1989

DEPENDENT VARIABLE 14 LUTRIPS
FROM 1984:11 UNTIL 1987: 2

TOTAL OBSERVATIONS 28 SKIPPED/MISSING -0
USABLE OBSERVATIONS 28 DEGREES OF FREEDOM a3
R**2 90641419 RBAR®*2 89013840
SSR -35285295 SEE . 12386054
DURBIN-WATSON 1.72598374

Q( 14)=  13.7189 SIGNIFICANCE LEVEL .470854

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

L2 4 ] settedd ot Sed *eRe 4 e *eteseRwttedY

CONSTANT 0 O -17.53385 5.53339% -3.168730 .4286931E-02

1

2 LWILES 16 0 1.618710 3704849 4£.369168 -2243419€-03
3 LAVFARE 18 0 -.6422149 - 1604341 -4.573069 . 1349076€-03
4 LGAS 20 & .78B21688 1951711 4.007606 .5520189€-03
S LEMPLO 21 0 1.963606 .8589022 2.286181 -3178163E-01
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PIERCE TRANSIT, TACOMA, WA -- SYSTEM TOTAL Tue 08-15-1989

CONVERGENCE REACHED ON ITERATION 27

DEPENDENT VARIABLE 33 FUTRIPS

FROM 1983; 5 UNTIL 1985:12

TOTAL OBSERVATIONS 32 SKIPPED/MISSING 0

USABLE OBSERVATIONS 32 DEGREES OF FREEDOM 26

R**2 68579456 RBAR™*2 62537043

SSR .72002022€E-01 SEE .52624220€-01

DURBIN-WATSON 1.79205471

Q¢ 15)=  9.53465 SIGNIFICANCE LEVEL .B47947

NO. LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC SIGNIF LEVEL

e STeVRRY *ee wee * - -
1 CONSTANT 1 0 .2906B43E-02 .46140206-02 .6300022 5341912
2 NFWMILE 2 0 .8496965 3114184 2.728472 -1125514E-01
3 W_FAVFAR 3 O -.4323256 9191079E-01 -4.703753 -T346811E-04
4 N_FGAS 4 1 (532048 1725582 2.626388 +14627404E-01
5 AR 5 1 -.4966286 .1987288 -2.499027 - 190994 8E-01
6 AR 6 2 -.5742301 1991314 -2.883674 .7791052E-02

TOLEDO AREA REGIONAL TRANSIT AUTH., TOLEDO, ON -SYSTEM TOTAL Tue 10-03-1989

DEPENDENT VARIABLE 14
FROM 1985: 3 UNTIL
TOTAL OBSERVATIONS 38
USABLE OBSERVATIONS 38
R**2 976746654
SSR .90889620€-01
DURBIN-WATSON 2.10571080
Q( 18)=  8.42052
NO. LABEL VAR LAG
oW eTeNew -*te *ve
1 CONSTANT 0 O
2 LWILES 16 O
3 LAVFARE 18 O
NO. LABEL VAR LAG
L 4 ¢ TTeVTYR *ew e
4 RHO 1 0

LUTRIPS
1988: 4
SKIPPED/MISSING 0
DEGREES OF FREEDOM 3%
RBAR**2 97469477
SEE .51703231E-01
SIGNIFICANCE LEVEL .971697
COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL
. 1838450 7979221 .2304048 .8191580
.8708597 623754TE-01  13.96157 .1153019€- 14
-~ .8547404 -28936L1E-01 -29.53858 .6822153€-16
COEFFICIENT STAND. ERROR T-STATISTIC SIGNIF LEVEL
TR TEYRed PR TeTeRTReR eTetreTeeed L2 24 44442444}
.2627290 . 1685595 1.558672 . 1283348

WILLIAMSPORT BUREAU OF TRANS, WILLIAMSPORT, PA -SYSTEM TOTAL Wed 08-23-1989%

CONVERGENCE REACHED ON ITERATION 13
DEPENDENT VARIABLE 33  FUTRIPS
FROM  1985:10 UNTIL  1988: 5
TOTAL OBSERVATIONS 32 SKIPPED/MISSING 0
USABLE OBSERVATIONS 32  DEGREES OF FREEDOM 27
Re*2 78420960  RBAR™*2 75224066
SSR .99818739E-02  SEE .19227559€-01
DURBIN-WATSON 2.32174664
aC 15)=  10.6476 SIGNIFICANCE LEVEL .777149
NO.  LABEL VAR LAG  COEFFICIENT STAND. ERROR  T-STATISTIC
*Rw *HeTNew "Ny ' TR TTEENNeN aretetTeeRee PR ERTTTSTR
1 CONSTANT 1 0 -.1493218£-03 .2237549E-02 -.6673455E-01
2 N_FWILE 2 0 .B264578 .B115224E-01  10.18404
3 NFAVPAR 3 0 -.2993627 .1187812 -2.520286
4  N_FEWPLO 4 3 .E38792 .3245033 2.584850
5  WASEAS 5 12 -.6759709 .2540004 -2.661299

SIGNIF LEVEL
cooontToTen

9472847

-3814860E-08
- 1794335€-01
- 1546680€E-01
. 1294607€-01
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PALM BEACH COUNTY TRANS AUTH, WEST PALM BEACK, FL -SYSTEM TOTAL Tue 08-15-1989

DEPENDENT VARIABLE 14 LUTRIPS
FROM 1985: & UNTIL 1988: 1

TOTAL OBSERVATIONS 3% SKIPPED/MISSING 0

USABLE OBSERVATIONS 3% DEGREES OF FREEDOM 29

Re*2 87657669 RBAR**2 .85955278

SSR .37708537¢-01 SEE -36059595E-01

DURBIN-WATSON 2.37699841

Q( 15)= 14.0863 SIGNIFICANCE LEVEL .51899

NO. LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

e arteetd L L B *ee » o STVt TENeY PETETRRNETER
CONSTANT 0 0 -5.986112 3.059698 <1.956439 .6010512€-01
LVMILES 16 0 .9202855 1279354 7.193359 .6794576€-07
LEMPLO 21 0 1.069849 .4228498 2.530091 -1709124E-01
LAVFARE 18 0 -.6046581 .2069095 -2.922331 .6668761E-02

LABEL VAR LAG COEFFICIENT  STAND. ERROR T-STATISTIC  SIGNIF LEVEL

*eTeteR e et TR NTTROTS SrTeRReTERed SRS ARTTRTTNOR srvetTetNRTd

RHO 1 0 .9107384 .7385363E-01 12.33167 3T19454E-08

END OF LISTING
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