BART Climate Resiliency Planning

Tian Feng, FAIA, FCSIDistrict Architect, San Francisco Bay Area Rapid Transit District
2019 APTA Sustainability & Multimodal Planning Workshop

Cumulative TOD Projects

BART's Carbon Footprint

BART Progress on Climate Resiliency

2012- Climate Change Adaptation Pilot

Transit specific, national context, FTA fund

2014 - Climate Change & Extreme Weather Adaptation
Transportation in scope, regional context, FHWA fund

2016 - Local Hazard Mitigation Plan Agency specific, BART fund

2018 - BART Sea-level Rise & Storm Surge ResiliencyTransit specific but inter-agency, Caltrans fund

FTA Project: Developed Approach & Process

- Element 1 Climate Hazards in the Bay Area
 - Sea Level Rise, Downpour & Flooding
- Element 2 Vulnerability and Risk Assessment
- Element 3 Adaptation Strategies
 - Global Rail Sector Climate Adaptation Strategies
 - Adaptation Strategies
 - Prioritizing Adaptation Strategies
- Element 4 Links to BART Organization and Practices
- Element 5 Asset Management and Life-Cycle Cost Analysis

FTA Project: Focus on BART's Critical Assets

FHWA Project: Regional Approach

Core Transportation Assets

- Drainage System Modifications
- Update Emergency Management Plans
- Relocation/Replacement/Enhancement
- ITS Solutions

Focus Area

- Levees
- Shoreline Protection (berms)
- Natural and Engineered Solutions

Agency Specific

- Information Databases
- Coordination
- Strategies that can be integrated into normal maintenance

Team work of BART, MTC, BCDC, and Caltrans Sites included Route 92, Bay Bridge Touch Down and Coliseum Area

Caltrans Project: SLR & Storm Surge Resiliency

YEAR 2050 (>5 ft) 1.9 ft* + ~3.5 ft** = 5.4 ft

YEAR 2100 (10 ft)

82.8 inches + 4 2 inches = 124.8 inches

Sea-level Rising (0.5% probability) + 100 year Storm = Water Level

Project originally proposed using 50% probabilistic projection.
 Updated to 0.5 % based BART infrastructure's criticality.
 ** Based BCDC's Adapting To Rising Tide program

Damage Assessment Approach

Embarcadero Station Site: Points of Water Entry

Embarcadero Station Site Adaptation Design

Deployable Cover

Raised entrance

Permanent flood wall with deployable shield

Temporary Flood Walls

Water intrusion through station box down into concourse level.

Pilot Repair

- Polyurethane Grout (Hydrophobic) – catalyst as agent
- Polyurethane Grout (Hydrophilic) – water as agent
- Elastomeric Polymer Rubber – suseptable to heat

Recommendation:

- Positive side curtain wall injection (Drill holes in pattern, inject till grout exits adjacent holes)
- Polyurethane Grout (Hydrophobic)

BART Facilities Standards

Facility Design Criteria

Principles and recommendations for designing a functional facility based on good practices and BART's experience. Mandatory requirements for configurations and attributes required for facility safety, usability, operability and maintainability.

	 	-		-
AR	 		_	_
-	 	_		

ELECTRICAL

CIVIL

General

Facilities Security

Landscaping and Vegetation Control

Maintenance and Engineering

Passenger Stations

Passenger Station Sites

Police Department Facilities

Resiliency Against Extreme Weather

Revenue Processing Building

Ξ