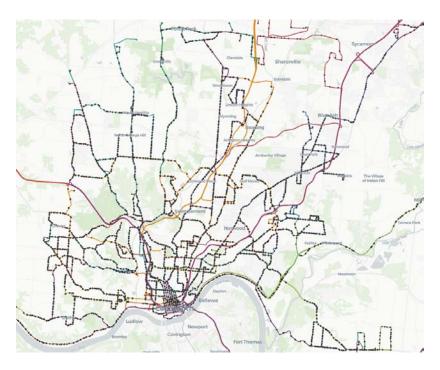
Bus Stop Spacing and Reliability APTA Sustainability and Multimodal Workshop

Boston, MA| 30 July 2019

Agenda

• SORTA and Bus Stop Spacing Objectives

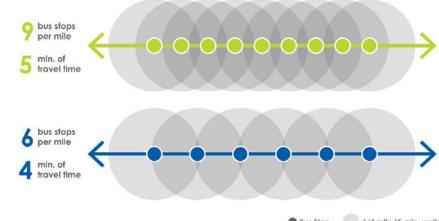
• FAStops Approach

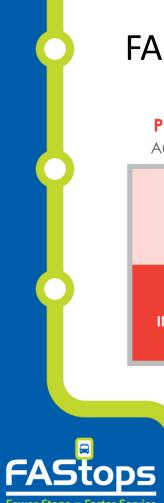

• FAStops Pilot & Preliminary Findings

• System-wide Implementation

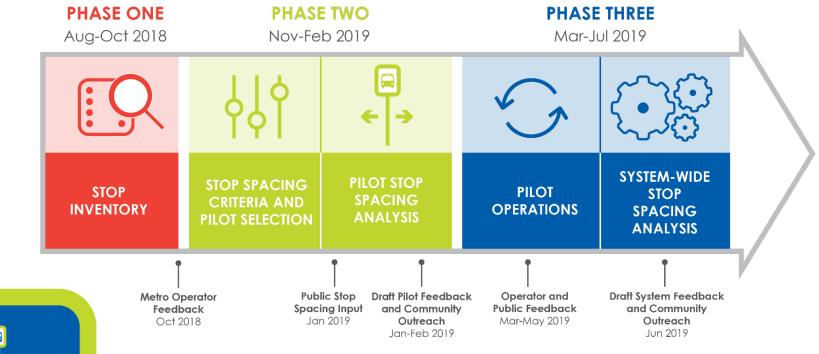
SORTA Network and Stop Spacing

- Service area population over 2M
- 45 fixed routes ≈ 4,500 stops
 - 25 Local, 20 Express
- Prioritized coverage and need-based service
- Customer requests for new stops. Easy to give, but hard to take away





Stop Spacing Objectives


- Faster: Fewer stops means more time spent moving
- More reliable: More likely to stay on schedule
- Smoother ride: Less stop-and-go service
- Better facilities: Identify priority stops for improvements

FAStops Schedule

Fewer Stops = Faster Service

Stop Spacing and Density

Low DensityHigh DensityEvery 2500 ftEvery 2 - 3 blocks

How have others implemented stop spacing guidelines and practices?

- Population and employment density
- Customer considerations: activities of daily need, transit dependency, special needs

What is the proposed stop spacing for FAStops?

• Current Metro average spacing: ≈ 0.16 miles (850 feet), or 7 stops per mile

Surrounding Environment	Density	# Stops in Density Range	Desired Stop Spacing (feet)	# Stops per mile	% Stops Below Desired Spacing
High Density	> 20 residents per acre> 10 jobs per acre	< 900	800 - 1,100	5 - 7	80%
Moderate Density	10-20 residents per acre 5-10 jobs per acre	1,900+	1,000 - 1,300	4 - 5	88%
Low Density	< 10 residents per acre < 5 jobs per acre	1,700+	1,300 - 1,800	3 - 4	90%

How Does FAStops Work?

Ultimately, the model inputs consider...

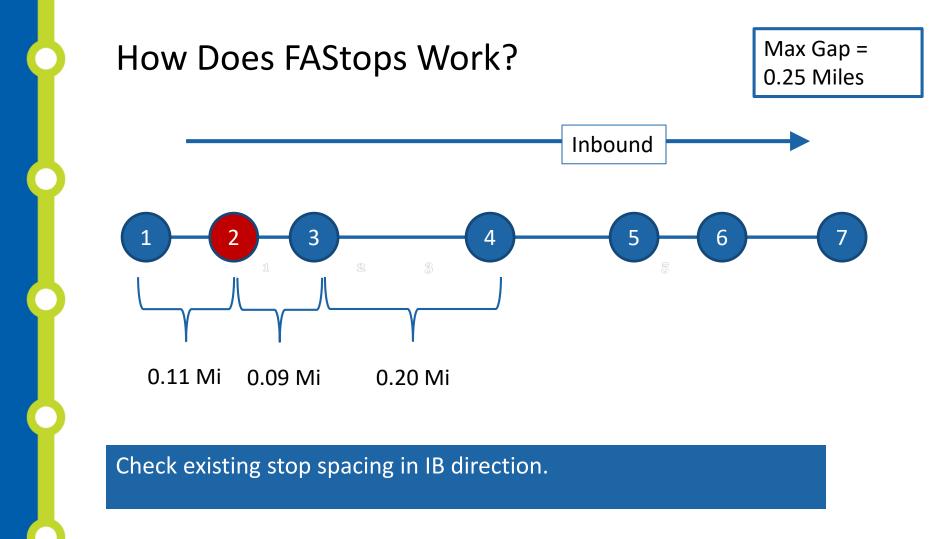
- What stops <u>cannot</u> be removed -- no matter what? (Transit Centers, those already identified for capital improvements, time points, etc.)
- Pop/Emp density around each stop (Low, Medium, High)
- Existing stop spacing and Inbound/Outbound stop-pairing
- Maximum 'allowable' inbound and outbound gap creation (by density)
- Route analysis sequence, Stop ID info
- Stop Score (combination of 18 variables)

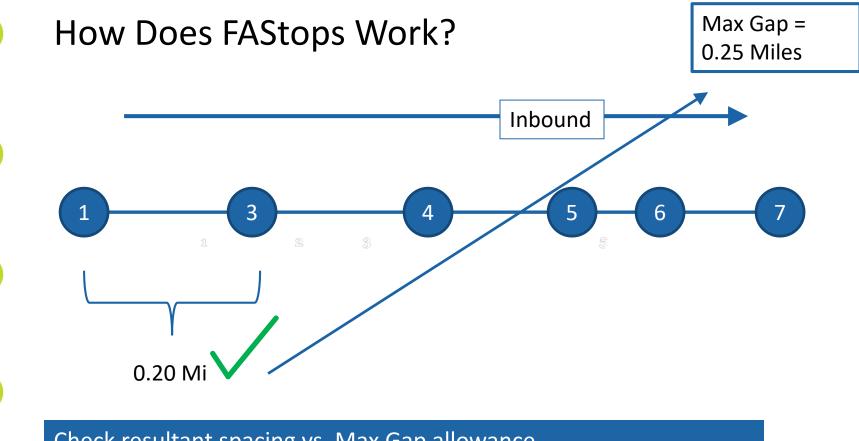
All results require detailed QAQC review with Agency Ops and Scheduling staff for manual adjustments, as appropriate

Stop Scoring

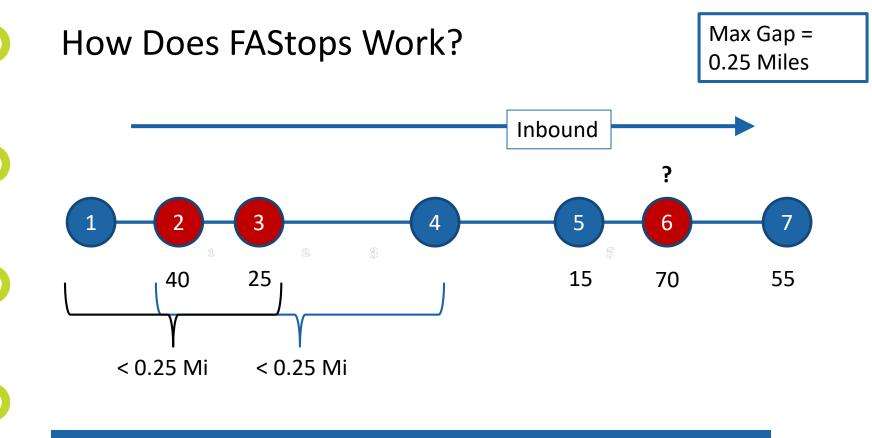
Inventory stop conditions to compare sequential stops when they are too close together and both are considered for removal

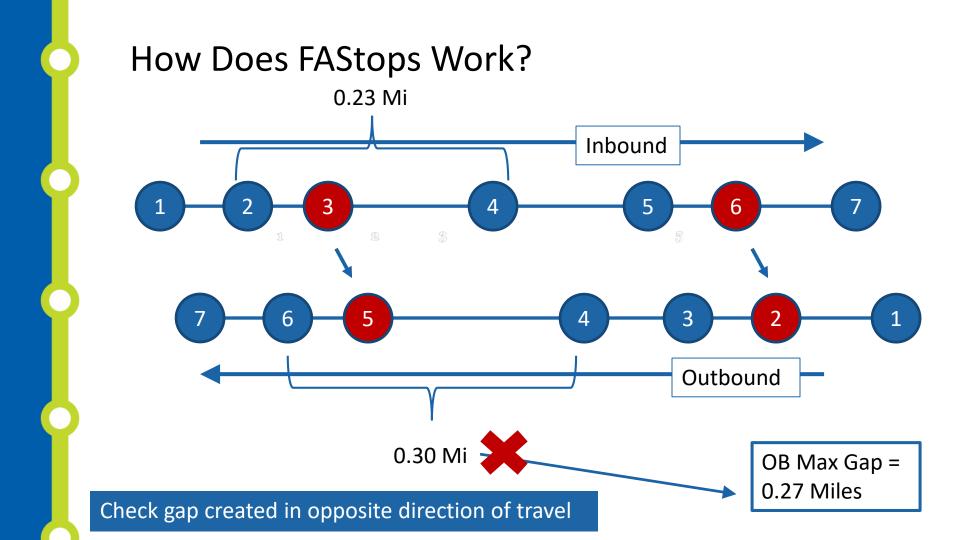
(100 pt max)

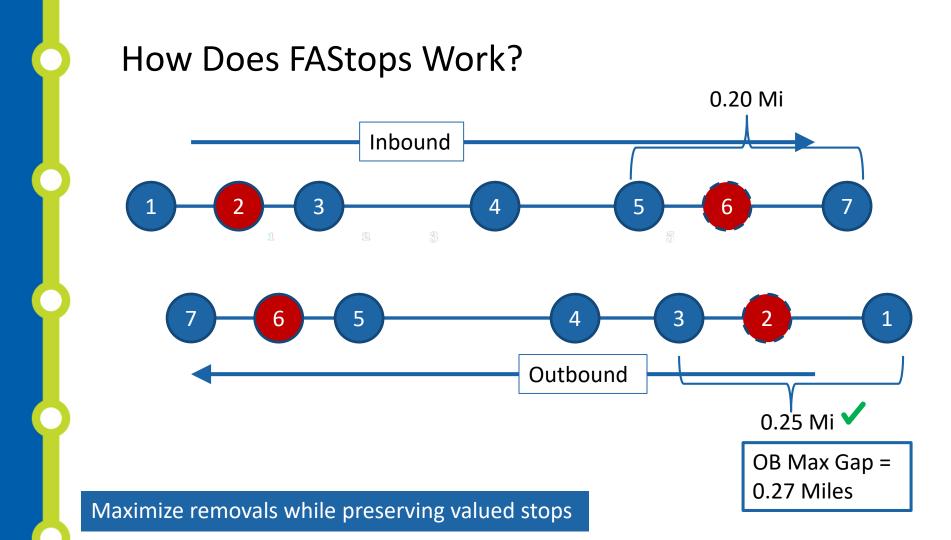

- Transit Demand (44 pts)
 - Average boardings, major destinations, transfer points, land use
- Site Selection (27 pts)
 - Current stop spacing, concrete bus pad, safe bus pull-in area, far/near side
- Amenities (16 pts)
 - Shelter, bench, lighting, arrival information, waste bins
- Pedestrian, ADA Accessibility (13 pts)
 - Sidewalk and intersection presence, ADA boarding, neighborhood access



BUS STOP LO	CATIONS	
MID-BLOCK	NEARSDE	FARSIDE







Check resultant spacing vs. Max Gap allowance

Bottom Line: The gap created is most important. The stop score is used when sequential stops are eligible for removal.

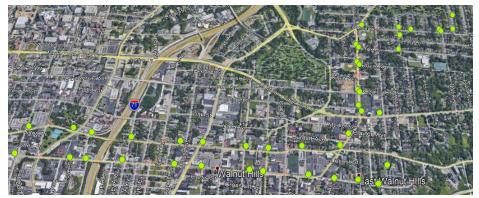
FAStops Model Limitations

- Pre-processing of stop inventory data
- Can be hard to trace logic in response to questions

3

4

- Results may be different route to route for shared stops
- Existing stop spacing patterns can lead to less than optimal results

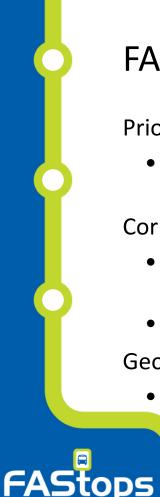

5

6

- Manual adjustments
 - Orphans and Xtra service stops
 - Hills and grade challenges
 - Operator and public feedback
 - Exiting, built environment

Verifying FAStops Removal Analysis

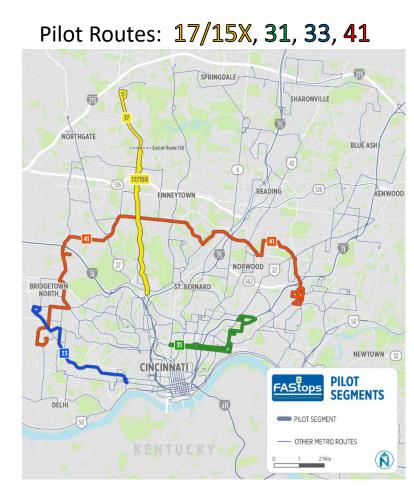
- Public & Operator feedback
 - Input on current stop spacing problem areas
 - Feedback on draft pilot stop spacing and removals
- Consultant/SORTA QC
 - Visual and data-driven review of draft model results
- Pilot performance data
 - On-time performance, ridership, delay and run time savings


Sample results: route #31

Sample results: route #41

FAStops Pilot

Fewer Stops = Faster Service


FAStops Pilot Routes

Priority travel corridors

High ridership routes, crosstown and commuter services

Corridor segments

- Use time points to measure improvement
- Minimize conflict with other routes
- Geography
 - Equity coverage

Challenges to Calculating Travel Time Savings

- Existing schedules / Time Points (TPs) not modified
 - Schedules still tailored to reflect baseline traffic conditions and operations
 - Passenger trip planning information not updated
- Operating policies
 - Implementation of normal service changes (Spring Pick); driver changes
 - On-Time Performance (OTP) driver requirements
- Automated data collection
 - Interpreting reports of OTP 'Arrival' and 'Departure' times/adherence

Frequency of Time Stopped (excludes boarding/alighting dwell time)

Period Route 0.5 – 2 min 2 - 4 min 4-6 min 6-9 min (daily avg) Baseline 43 23 1447 205 17 Pilot 1324 (-9%) 181 (-12%) 49 (+14%) 26 (+13%) Baseline 571 91 24 20 31 Pilot 619 (+8%) 105 (+15%) 26 (+8%) 23 (+15%) Baseline 29 23 1045 138 33 Pilot 1354 (+30%) 189 (+37%) 32 (+10%) 23 (0%) Baseline 54 18 11 498 41 Pilot 575 (+15%) 59 (+9%) 12 (-33%) 14 (+27%)

Baseline - values are based on a sample size of daily operations prior to Pilot implementation **Pilot** - values are based on a sample size of daily operations during Pilot service

(2/12 to 2/14/2019 and 2/19 to 2/20/2019) (4/16 to 4/18/2019 and 5/15 to 5/16/2019)

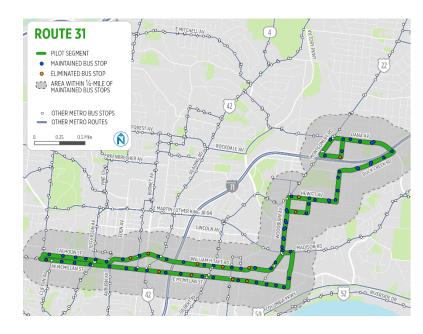
Rte. 17 - Pilot Summary

- Pilot OB trips average arrival at TPs 1minute sooner than baseline
- OB trips average arrival at TPs 2 min ahead of projected (based on inline operations between TPs)

Peak	Inli	ne Adherei	nce	TP Adherence		
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
IB	(-)02:41	(-)02:25	(+)00:16	(-)02:17	(-)02:31	(-)00:14
ОВ	(-)02:45	(-)03:15	(-)00:29	(-)04:31	(-)05:41	(-)01:10

Off-	Inli	ne Adherer	nce	TP Adherence		
Peak Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
IB	(-)02:37	(-)02:30	(+)00:07	(-)02:12	(-)02:36	(-)00:24
ОВ	(-)02:52	(-)03:26	(-)00:33	(-)04:54	(-)05:53	(-)00:58

Inline Adherence - average of all reported schedule Adherence values (projected to next TP) throughout service TP Adherence - averages only the schedule Adherence values reported as buses arrive at Time Points (-) time values indicate buses operating ahead of schedule - Early; (+) time values indicated buses operating behind schedule - Late


Rte. 31 - Pilot Summary

- EB trips arrived roughly 20 to 25 seconds earlier at TPs during <u>peak</u> hours of Pilot.
- WB trips arrived roughly 25 to 30 seconds earlier at TPs during <u>off-peak</u> hours of Pilot period

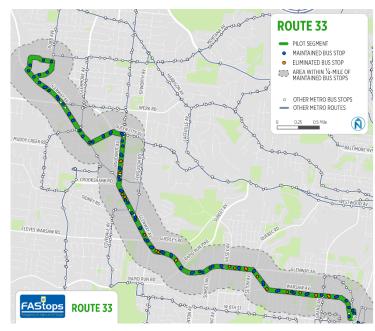
Peak	Inline Adherence			TP Adherence		
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
EB	(-)01:52	(-)02:16	(-)00:24	(-)02:29	(-)02:50	(-)00:20
WB	(-)02:36	(-)02:36	00:00	(-)03:17	(-)03:16	(-)00:01

Off-	Inl	ine Adher	ence	Т	P Adheren	ce
Peak Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
EB	(-)01:45	(-)01:49	(-)00:04	(-)02:16	(-)02:24	(-)00:08
WB	(-)01:40	(-)02:10	(-)00:30	(-)02:12	(-)02:37	(-)00:24

No. of Stops	No. Stops for Removal	% Stop Removal
85	13	15%

Inline Adherence - average of all reported schedule Adherence values (projected to next TP) throughout service
TP Adherence - averages only the schedule Adherence values reported as buses arrive at Time Points
(-) time values indicate buses operating ahead of schedule - Early;
(+) time values indicated buses operating behind schedule - Late

Rte. 33 - Pilot Summary

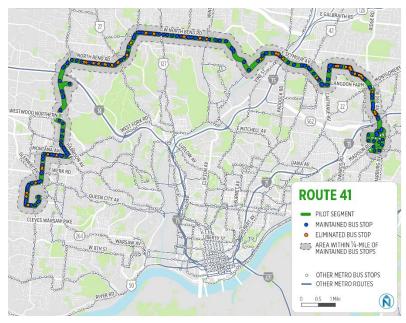

- Pilot OB trips arrived roughly 20 to 25 seconds earlier at TPs during <u>off-peak</u> hours
- Greatest increase in frequency of non-dwell time vehicle stop occurrence among Pilot routes

Peak	Inline Adherence			TP Adherence		
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
IB	(-)01:15	(-)01:20	(-)00:04	(-)02:03	(-)01:51	(+)00:11
ОВ	(-)02:47	(-)02:23	(+)00:23	(-)04:31	(-)04:21	(+)00:09

Off- Peak	inime Aunerence				Adherenc	e
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
IB	(-)01:28	(-)01:04	(+)00:24	(-)02:09	(-)01:50	(+)00:18
ОВ	(-)02:00	(-)02:05	(-)00:04	(-)04:02	(-)04:25	(-)00:23

Inline Adherence - average of all reported schedule Adherence values (projected to next TP) throughout service TP Adherence - averages <u>only</u> the schedule Adherence values reported as buses arrive <u>at</u> Time Points (-) time values indicate buses operating ahead of schedule - **Early**; (+) time values indicated buses operating behind schedule - **Late**

No. of Stops	No. Stops for Removal	% Stop Removal
109	24	22%


Rte. 41 - Pilot Summary

- WB trips arrived roughly 1.75 to 3 minutes earlier at TPs during Pilot period
- EB trips arrived roughly 0.75 to 1.25 minutes earlier at TPs during Pilot period

Peak Inline Adherence				-	TP Adherence		
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change	
EB	(-)02:44	(-)04:10	(-)01:26	(-)03:33	(-)04:48	(-)01:15	
WB	(-)03:22	(-)05:45	(-)02:23	(-)04:03	(-)07:14	(-)03:10	

Off- Peak	Inl	line Adher	ence	TP Adherence		
Hrs.	Baseline Avg	Pilot Avg	Change	Baseline Avg	Pilot Avg	Change
EB	(-)02:37	(-)03:17	(-)00:40	(-)03:35	(-)04:18	(-)00:42
WB	(-)02:41	(-)04:04	(-)01:23	(-)03:33	(-)05:18	(-)01:44

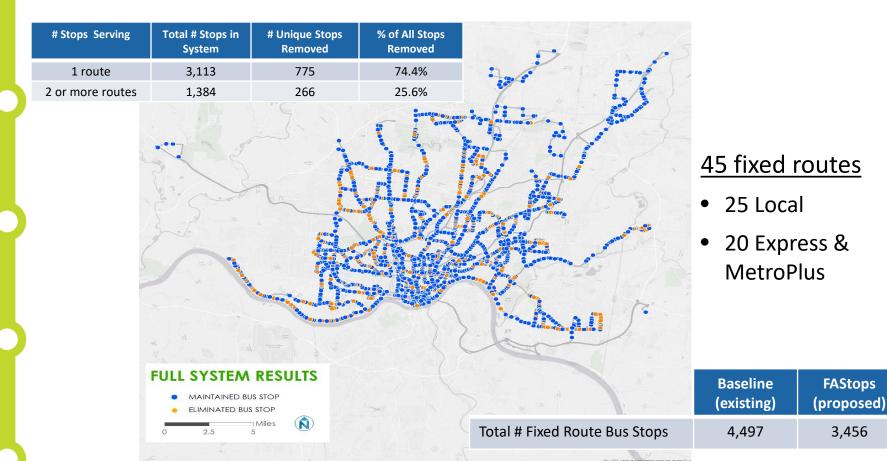
No. of Stops	No. Stops for Removal	% Stop Removal
284	69	24%

Inline Adherence - average of all reported schedule Adherence values (projected to next TP) throughout service TP Adherence - averages <u>only</u> the schedule Adherence values reported as buses arrive <u>at</u> Time Points (-) time values indicate buses operating ahead of schedule - **Early**; (+) time values indicated buses operating behind schedule - **Late**

Public Engagement

- Oct 2018: Operator input on problem stop locations
- **Dec 2018:** News release, project website and CARTO online visualization launch
- Jan/Feb 2019: Pilot area community meetings
- Mar 2019: Pilot launch
- May 2019: Passenger and operator Pilot feedback
- July 2019: Phase 2 service area community meetings
- Nov 2019: Phase 3 service area community meetings

Major Takeaways/Lessons Learned


- Stop scoring should be much less complex
 - Ridership tells us *a lot* about a stop
 - Top 5 or so variables important to agency and customers
- Could push maximum spacing thresholds further
- Anticipate client feedback to build in the model (ex: senior centers, high ridership stops, etc.)
- Be even more active in the public messaging
- Create more rules like automatic eliminations below certain spacing/ridership

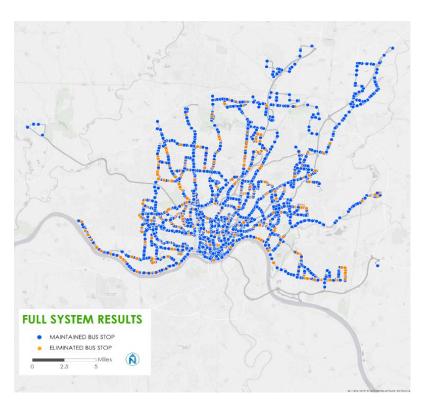
Full SORTA Network Analysis

FAStops Network Analysis Overview

FAStops Network Analysis Overview

- 4,497 unique stops in FAStops database
- 1,041 (23%) recommended for removal
 - Only 6% of existing riders would need to switch stops

Route Type	Number of Stops†	Number of Removals†	% Removal (all removals)	% Removal (all stops)
Express	2,155	380	27%	18%
Local	4,707	1,018	73%	22%


Stop Positions	Number of Stops†	Number of Removals†	% Removal (total by position)	% Removal (all removals)	% Removal (all stops)
Far Side	1,066	219	21%	21%	5%
Mid-Block	873	257	29%	25%	6%
Near Side	2,558	565	22%	54%	13%

FAStops

Fewer Stops = Faster Service

Next Steps

- Phase 2 FAStops Implementation
 - August 2019
- Phase 3 FAStops Implementation
 - December 2019
- Additional Considerations
 - Stop consolidation opportunities
 - Operations and safety improvements
 - Passenger amenity improvements

FAStops Benefits

- Low-Cost, Low-Labor deployment
- Improved OTP and running times
 - Mitigate O&M increases by not having to add more buses
 - Supports route pulsing at transfer points
- Does not require full scheduling revamp
- Inventory identified other improvement opportunities
 - Stop amenity and ADA compliance
 - Operational, driver and customer safety
- Happier operators more recovery time, less stress

Thank You

https://www.go-metro.com/fastops

Khaled Shammout, Director of Transit Development Southwest Ohio Regional Transit Authority(SORTA)/Metro - Cincinnati, OH <u>kshammout@go-metro.com</u> (513) 632-7671 Jimi Mitchell, Senior Associate Nelson\Nygaard Consulting - Los Angeles, CA jmitchell@nelsonnygaard.com (213) 694-4457