Planning for Priority with Pings

Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay

Tal Green, P.E.

SFMTA (Muni), Transit Planner San Francisco, CA

Presentation Outline

- Title breakdown!
- Current transit metrics
- Need for high res data analysis
- Data collection and methodology overview
- Metric #1 transit signal delay
- Metric #2 % of buses stopped at intersection
- Next steps

Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay

Using <u>High Resolution</u> Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay

Using High Resolution <u>Transit Geolocation Data</u> to Analyze Performance and Identify Intersections that Contribute to Transit Delay

Using High Resolution Transit Geolocation Data to **Analyze Performance** and Identify Intersections that Contribute to Transit Delay

Using High Resolution Transit Geolocation Data to Analyze Performance and <u>Identify</u>
<u>Intersections that Contribute to Transit Delay</u>

Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay

Currently Available Metrics

Mode Based On Time Performance

Stop Level Dwell Times

Route Based On Time Performance

	Main St & Howard St S-NS/SI	Market St&Montgomery St W-F S/BZ	Geary St&Powell St NW-FS/BZ	Geary Blvd&Van Ness Ave NW-FS/BB	Geary Blvd&Fillmore St NW-FS/BZ
	Market St&Montgomery St.W-FS/BZ	Geary St&Powell St NW-FS/BZ	Geary Blvd&Van Ness Ave NW-FS/BB	Geary Blvd&Fillmore St NW-FS/BZ	Geary Blvd&Masonic Ave N-MB/BZ
Avg. Travel Time Minutes	7.3	4.0	4.5	4.3	4.8
Std. dev. of Travel Time Minutes	1.6	0.8	0.8	5.8	0.9
Speed (mi/hr)	5.8	5.0	9.6	8.9	9.5
Std. dev. of Speed (mi/hr)	1.3	1.0	1.6	1.9	1.8
# Trips	9.561	9.688	9,718	9.736	9.740

Timepoint to Timepoint Travel Time

Data Collection Effort

- On board equipment collects data
 - Approximately 500 buses equipped
- Daily data dump in yard over WiFi
- Weekly transmission of all data (~4 GB)
 - Began collecting data in November, 2018
- Data processing occurs weekly
 - Currently on local machine
 - Future: through IT in a production data warehouse

2.7 million GPS points from one day of data

Methodology Overview

Metric #1 - Transit Signal Delay

Processing

- Isolated data to individual trips
- Matched trip to schedule
- Determined points of interest, matched to nearest
- Consumable data
 - Pushed to Tableau server
 - Can be pivoted by route, direction, location, time of day, etc.

Processing – target upstream and downstream points

Intersection Name	Median Delay (sec)	Number of Records
25th St & Mission	4	372
24th St & Mission	14	380
23rd St & Mission	11	367
22nd St & Mission	19	365
21st St & Mission	2	350
20th St & Mission	3	347
19th St & Mission	16	343
18th St & Mission	20	346
17th St & Mission	2	343
16th St & Mission	3	339
15th St & Mission	7	329
14th St & Mission	17	332

Metric #2 - % of Buses Stopped at Intersection

Processing

- Isolated data to individual trips
- Matched trip to schedule
- Draw approach zones for signals
- Determine if buses traveled <2MPH

Consumable data

- Pushed to Tableau server
- Can be pivoted by route, direction, location, time of day, etc.

Processing – define and utilize approach zones

Intersection Name	% Stopped	Number of Records
25th St & Mission	29%	400
24th St & Mission	47%	408
23rd St & Mission	41%	415
22nd St & Mission	69%	379
21st St & Mission	5%	374
20th St & Mission	14%	378
19th St & Mission	55%	396
18th St & Mission	70%	394
17th St & Mission	4%	377
16th St & Mission	33%	375
15th St & Mission	34%	380
14th St & Mission	59%	362

For More Details...

```
#During Davlight Saving (comment out if not) - March to November
allPoints['TimestampPacific'] = allPoints['TimestampNew'] - pd.Timedel
allPoints['tripID'] = allPoints['tripID'].astype(str)
allPoints['date'] = allPoints['TimestampPacific'].dt.strftime('%Y-%m-
allPoints['trip Date'] = allPoints['date'] +" "+ allPoints['tripID']
#display(allPoints.tail())
                                                                              mergedData["CNN"] = segment["CNN"]
                                                                              mergedData["intName"] = segment["name"]
# Loop through each zone to get minimums in each per trip Date
                                                                              mergedData["freeFlowTT"] = segment["freeFlowTT"]
                                                                              mergedData["includesNearsideStop"] = segment["includesNearsideStop"]
for z, zone in allZones.iterrows():
                                                                             # Calculate delay
                                                                              mergedData["delay"] = mergedData["travelTime"] - mergedData["freeFlowTT"]
         pointsInZone = allPoints.loc[(allPoints['route'] == zo
                                                                             # Flag extreme outliers (True if > 10 minutes to get through intersection)
                                           (allPoints['DIRECTION'] =
                                                                             nergedData["extremeOutlier"] = (nergedData["travelTime"]>600)
                                           (allPoints['lat'] > zone
                                           (allPoints['lng'] > zone
                                           (allPoints['lat'] < zone
                                                                             mergedData.drop(['PUBLICROUTENAME', 'TRIPID', 'LASTUPDATE', 'TimestampNew'], axis=1, inplace=True
                                           (allPoints['lng'] < zone
                                                                             #resultsDF = pd.concet([resultsDF,mergedDate])
                                                                             return mergedData
         # Go to next zone if filter yielded nothing
         if pointsInZone.empty:
              continue
                                                                              # Add code here to better track errors (create list and add to list)
         # Determine the minimum value in each zone
                                                                         of progressBar(chunkCounter, totalChunks, currentSegment, totalSegments, progress=0):
                                                                           newProgress = int(100 * float(currentSegment)/float(totalSegments))
         minPoints = pointsInZone.loc[pointsInZone.groupby("tri
                                                                          if newProgress >= (progress+5):
                                                                             clear output()
                                                                             print ("Progress: ", newProgress, "& complete (", currentSegment, "of", totalSegments, "trips anal
         # True if stopped, False if didn't stop
                                                                             progress = newProgress
         minPoints['stopped'] = minPoints["speed"]<2
                                                                          return progress
         # Add values from current Zone series to each record
         minPoints['zoneID'] = zone['zoneID']
         minPoints['CNN'] = zone['CNN']
         minPoints['intName'] = zone['intName']
         minPoints['intSequence'] = zone['intSequence']
         minPoints['includesNearsideStop'] = zone['includesNearsideStop
         #LOOK INTO THIS: at some point, the order of the columns chand
```

Next Steps

- Conduct before/after studies
- Productionalize processing efforts
- Include intersections with nearside stops
- Address poor GPS readings in NE due to Urban canyon effect

Acknowledgement

lan Martin Student Intern Summers 2018, 2019

Thank You!

Tal.Green@sfmta.com

