Planning for Priority with Pings Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay Tal Green, P.E. SFMTA (Muni), Transit Planner San Francisco, CA ## **Presentation Outline** - Title breakdown! - Current transit metrics - Need for high res data analysis - Data collection and methodology overview - Metric #1 transit signal delay - Metric #2 % of buses stopped at intersection - Next steps Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay Using <u>High Resolution</u> Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay Using High Resolution <u>Transit Geolocation Data</u> to Analyze Performance and Identify Intersections that Contribute to Transit Delay Using High Resolution Transit Geolocation Data to **Analyze Performance** and Identify Intersections that Contribute to Transit Delay Using High Resolution Transit Geolocation Data to Analyze Performance and <u>Identify</u> <u>Intersections that Contribute to Transit Delay</u> Using High Resolution Transit Geolocation Data to Analyze Performance and Identify Intersections that Contribute to Transit Delay ## **Currently Available Metrics** Mode Based On Time Performance Stop Level Dwell Times Route Based On Time Performance | | Main St &
Howard St
S-NS/SI | Market
St&Montgomery
St W-F S/BZ | Geary St&Powell
St NW-FS/BZ | Geary Blvd&Van
Ness Ave
NW-FS/BB | Geary
Blvd&Fillmore St
NW-FS/BZ | |----------------------------------|---------------------------------------|--|--|--|---------------------------------------| | | Market
St&Montgomery
St.W-FS/BZ | Geary St&Powell
St NW-FS/BZ | Geary Blvd&Van
Ness Ave
NW-FS/BB | Geary
Blvd&Fillmore St
NW-FS/BZ | Geary
Blvd&Masonic
Ave N-MB/BZ | | Avg. Travel Time Minutes | 7.3 | 4.0 | 4.5 | 4.3 | 4.8 | | Std. dev. of Travel Time Minutes | 1.6 | 0.8 | 0.8 | 5.8 | 0.9 | | Speed (mi/hr) | 5.8 | 5.0 | 9.6 | 8.9 | 9.5 | | Std. dev. of Speed (mi/hr) | 1.3 | 1.0 | 1.6 | 1.9 | 1.8 | | # Trips | 9.561 | 9.688 | 9,718 | 9.736 | 9.740 | Timepoint to Timepoint Travel Time ### **Data Collection Effort** - On board equipment collects data - Approximately 500 buses equipped - Daily data dump in yard over WiFi - Weekly transmission of all data (~4 GB) - Began collecting data in November, 2018 - Data processing occurs weekly - Currently on local machine - Future: through IT in a production data warehouse 2.7 million GPS points from one day of data ## **Methodology Overview** ## Metric #1 - Transit Signal Delay #### Processing - Isolated data to individual trips - Matched trip to schedule - Determined points of interest, matched to nearest - Consumable data - Pushed to Tableau server - Can be pivoted by route, direction, location, time of day, etc. Processing – target upstream and downstream points | Intersection Name | Median Delay
(sec) | Number of
Records | |-------------------|-----------------------|----------------------| | 25th St & Mission | 4 | 372 | | 24th St & Mission | 14 | 380 | | 23rd St & Mission | 11 | 367 | | 22nd St & Mission | 19 | 365 | | 21st St & Mission | 2 | 350 | | 20th St & Mission | 3 | 347 | | 19th St & Mission | 16 | 343 | | 18th St & Mission | 20 | 346 | | 17th St & Mission | 2 | 343 | | 16th St & Mission | 3 | 339 | | 15th St & Mission | 7 | 329 | | 14th St & Mission | 17 | 332 | # Metric #2 - % of Buses Stopped at Intersection #### Processing - Isolated data to individual trips - Matched trip to schedule - Draw approach zones for signals - Determine if buses traveled <2MPH #### Consumable data - Pushed to Tableau server - Can be pivoted by route, direction, location, time of day, etc. Processing – define and utilize approach zones | Intersection Name | % Stopped | Number of
Records | |-------------------|-----------|----------------------| | 25th St & Mission | 29% | 400 | | 24th St & Mission | 47% | 408 | | 23rd St & Mission | 41% | 415 | | 22nd St & Mission | 69% | 379 | | 21st St & Mission | 5% | 374 | | 20th St & Mission | 14% | 378 | | 19th St & Mission | 55% | 396 | | 18th St & Mission | 70% | 394 | | 17th St & Mission | 4% | 377 | | 16th St & Mission | 33% | 375 | | 15th St & Mission | 34% | 380 | | 14th St & Mission | 59% | 362 | ## For More Details... ``` #During Davlight Saving (comment out if not) - March to November allPoints['TimestampPacific'] = allPoints['TimestampNew'] - pd.Timedel allPoints['tripID'] = allPoints['tripID'].astype(str) allPoints['date'] = allPoints['TimestampPacific'].dt.strftime('%Y-%m- allPoints['trip Date'] = allPoints['date'] +" "+ allPoints['tripID'] #display(allPoints.tail()) mergedData["CNN"] = segment["CNN"] mergedData["intName"] = segment["name"] # Loop through each zone to get minimums in each per trip Date mergedData["freeFlowTT"] = segment["freeFlowTT"] mergedData["includesNearsideStop"] = segment["includesNearsideStop"] for z, zone in allZones.iterrows(): # Calculate delay mergedData["delay"] = mergedData["travelTime"] - mergedData["freeFlowTT"] pointsInZone = allPoints.loc[(allPoints['route'] == zo # Flag extreme outliers (True if > 10 minutes to get through intersection) (allPoints['DIRECTION'] = nergedData["extremeOutlier"] = (nergedData["travelTime"]>600) (allPoints['lat'] > zone (allPoints['lng'] > zone (allPoints['lat'] < zone mergedData.drop(['PUBLICROUTENAME', 'TRIPID', 'LASTUPDATE', 'TimestampNew'], axis=1, inplace=True (allPoints['lng'] < zone #resultsDF = pd.concet([resultsDF,mergedDate]) return mergedData # Go to next zone if filter yielded nothing if pointsInZone.empty: continue # Add code here to better track errors (create list and add to list) # Determine the minimum value in each zone of progressBar(chunkCounter, totalChunks, currentSegment, totalSegments, progress=0): newProgress = int(100 * float(currentSegment)/float(totalSegments)) minPoints = pointsInZone.loc[pointsInZone.groupby("tri if newProgress >= (progress+5): clear output() print ("Progress: ", newProgress, "& complete (", currentSegment, "of", totalSegments, "trips anal # True if stopped, False if didn't stop progress = newProgress minPoints['stopped'] = minPoints["speed"]<2 return progress # Add values from current Zone series to each record minPoints['zoneID'] = zone['zoneID'] minPoints['CNN'] = zone['CNN'] minPoints['intName'] = zone['intName'] minPoints['intSequence'] = zone['intSequence'] minPoints['includesNearsideStop'] = zone['includesNearsideStop #LOOK INTO THIS: at some point, the order of the columns chand ``` ## Next Steps - Conduct before/after studies - Productionalize processing efforts - Include intersections with nearside stops - Address poor GPS readings in NE due to Urban canyon effect ## Acknowledgement lan Martin Student Intern Summers 2018, 2019 ## Thank You! Tal.Green@sfmta.com