Rail Transit Fixed Structures Inspection and Maintenance

Abstract: This Rail Standard establishes a standard for inspecting and maintaining rail transit system fixed structures.

Keywords: ancillary structures, barrier walls, bridges, catenary structures, communication towers, crash walls, culverts, inspection, maintenance, periodic inspection and maintenance, retaining walls, safety, structures, transit structures, tunnels.

Summary: This standard provides general requirements for the periodic inspection of safety-critical components of rail transit structures. This standard defines the minimum means, methods and frequency of inspection and maintenance activities, and the qualifications that rail transit employees or contractors must have to perform these procedures. This standard provides both a rating system for safety-critical components and record-keeping requirements.

Scope and purpose: This standard applies to all fixed facilities that support or carry loads. This includes bridges, tunnels and ancillary structures; retaining walls; barrier (crash) walls; communication towers; catenary structures; and culverts. This standard applies to rail transit systems that operate light rail or heavy rail systems. It does not apply to commuter railroads that operate on the general railroad system regulated by the Federal Railroad Administration (FRA). The purpose of this standard is to establish, through broad-based industry participation and consensus, minimum requirements for inspections and maintenance of rail transit system structures to ensure the safety of the traveling public and transit system employees and to ensure the continued performance of rail transit infrastructure. This standard includes a listing of structure types to be inspected, the frequencies of such inspections, and the qualifications of rail transit system employees or contractors who perform these inspection and maintenance activities.
Participants
The American Public Transportation Association greatly appreciates the contributions of Travis Jones – SWG Chair, Clay Bunting, Rich Hovde, Joni Korte, Greg O’Hare, Dan Schiffer, and Bong Vang who provided the primary effort in revising this Rail Standard.

At the time this standard was completed, the working group included the following members:

Greg O’Hare, Chair
Clay Bunting, Vice Chair
Bong Vang, Secretary

Carlton Allen Michael Monestero
Charles Anderson Bill Morehead
Andrew Baker Will Mullet
Ray Blount Rotimi Ogunsuyi
Brasfield, Steve Phil Olekszyk
John Burkhard Al Panuska
Steve Brasfield Balaje Ravichandran
Antonio Cabrera Stephen Roberts
Rob Chappell Carol Rose
Arthur Douwes Mark Rudnicki
Michael Esford Dan Schiffer
Robert Fiore Glenn Shankle
Holbrook, Michael Frederick Smith
Brian Hooker Paul Swanson
Rich Hovde Pumpane, Corey
Travis Jones Steven Thompson
Rick Kindig Bong Vang
Joni Korte Carrie Wagener
Austin Marshal Quirk, William

Project Team
Charles Joseph
American Public Transportation Association

Contents

Introduction ............................................................................................................................ iii

Note on alternate practices ............................................................................................... iii

1. Inspection practices ......................................................................................................... 1
   1.1 Inspection manual........................................................................................................ 1
   1.2 Condition ratings ........................................................................................................ 1

2. Inspection implementation ............................................................................................... 4
   2.1 Inspection procedures ................................................................................................ 4
   2.2 In-depth and fracture critical inspections .................................................................. 4
   2.3 Inspection staff qualifications .................................................................................. 6
   2.4 Load rating/scour analysis ......................................................................................... 7
   2.5 Seismic ....................................................................................................................... 8
   2.6 Structural damage diagnosis techniques .................................................................. 8
   2.7 Underwater inspection .............................................................................................. 8

3. Inspection controls .......................................................................................................... 9
   3.1 Frequency .................................................................................................................. 9
   3.2 Documentation .......................................................................................................... 10

4. Maintenance .................................................................................................................... 11
   4.1 Qualifications............................................................................................................ 11
   4.2 Maintenance Items .................................................................................................. 11
   4.3 Frequency ................................................................................................................ 12
   4.4 Documentation ......................................................................................................... 12
   4.5 Inspection/maintenance record review ................................................................... 12

Related APTA Standards .................................................................................................. 13

References .......................................................................................................................... 13

Definitions ............................................................................................................................ 14

Abbreviations and acronyms ........................................................................................... 14

Summary of document changes .......................................................................................... 15

Document history ................................................................................................................. 16

Annex A: (informative) - Example of condition rating codes .............................................. 17

Annex B: (informative) - Example of documentation forms ............................................... 18

© 2016 American Public Transportation Association | ii
Introduction

This introduction is not a part of APTA RT-FS-S-001-02 First Revision October 6, 2016, Standard for Rail Transit Fixed Structures Inspection and Maintenance.

APTA rail transit safety standards represent an industry consensus on safety practices for rail transit systems to help achieve a high level of safety for passengers, employees and the general public. This document was created by and for those parties concerned with its provisions, namely, rail transit systems (operating agencies), manufacturers, consultants, engineers and general interest groups. This standard provides procedures for inspecting and maintaining rail transit structures.

APTA recommends this standard for the following:

- individuals or organizations that inspect, maintain and/or operate rail transit systems
- individuals or organizations that contract with others for the inspection, maintenance and/or operation of rail transit systems
- individuals or organizations that influence how rail transit systems are inspected, maintained and/or operated (including but not limited to consultants, designers and contractors)

This standard intends to meet the following objectives:

- to ensure that special life/safety equipment is operational and reliable
- to help rail transit systems incorporate safety considerations during the inspection and maintenance process
- to identify inspection criteria and maintenance standards that provide a high level of passenger and personnel safety.

Note on alternate practices

Individual rail transit systems may modify the practices in this standard to accommodate their specific equipment and mode of operation. APTA recognizes that some rail transit systems may have unique operating environments that make strict compliance with every provision of this standard impossible. As a result, certain rail transit systems may need to implement the standards and practices herein in ways that are more or less restrictive than this document prescribes. A rail transit system may develop alternates to APTA standards provided the alternates are based on a safe operating history and are described and documented in the system’s safety program plan (or another document that is referenced in the system safety program plan).

Documentation of alternate practices shall:

- Identify the specific APTA rail transit safety standard requirements that cannot be met.
- Provide justification for each requirement that cannot be followed.
- Describe the alternate methods used.
- Describe and substantiate how the alternate methods do not compromise safety and provide a level of safety equivalent to the practices in the APTA safety standard (operating histories or hazard analysis findings may be used to substantiate this claim).
Rail Transit Structure Inspection and Maintenance

This APTA standard has been established to provide general minimum requirements for transit agencies for inspecting and maintaining all fixed facility structures supporting rail transit system loads. This standard covers general inspection practices, inspection staff qualifications, inspection types and frequencies, and maintenance practices.

1. Inspection practices

1.1 Inspection manual

Rail transit systems shall develop or formally adopt existing structural inspection manuals with the following sections:

a) Inspection and Maintenance Organization
   • Job descriptions
   • Qualifications
   • Responsibilities

b) Policies
   • Personnel
   • Inspection
   • Maintenance
   • Safety
   • Reports, plans and files

c) Coordination
   • Internal interfaces
   • External interfaces

d) Quality assurance/quality control

e) Inspection procedures

f) Planning and scheduling

g) Inventory

h) Inspection type

i) Documentation

COMMENT: Each rail transit system shall obtain inspection manuals used by the state(s) in which it operates. These are necessary for inspecting/documenting “highway” grade separations that the rail transit system may own or maintain. A rail transit system with bridges that are regulated by FRA shall also ensure that their Bridge Safety Management Program conforms in accordance with 49 CFR part 237.

Transit Authorities are encouraged to verify if owners of overhead structures are inspecting and maintaining their overhead structures in accordance with the applicable laws and regulations. This is necessary for rail transit owners to assure a safe operating environment.

1.2 Condition ratings

Each transit system shall establish or formally adopt, a rating system pertaining to its structures that is both compatible with its maintenance planning and scheduling and with any outside agencies it must coordinate.
with. If it has a computerized maintenance system, then the rating system must be structured to input into that system.

The inspectors must be trained to uniformly apply the rating system when performing the inspections. The rating system, at a minimum, shall cover the structures and components listed in Section 1.2.1 through Section 1.2.5. Agencies are encouraged to augment the rating system as necessary to complement their infrastructure inventory.

### 1.2.1 Bridges

a) Substructure:
   - Material:
     - Timber
     - Concrete (cast in place/precast)
     - Masonry
     - Steel
   - Other:
     - Slope protection
     - Coating System

b) Superstructure
   - Type:
     - Truss
     - Multi-girder
     - Box girder
     - Arches
     - Slab
     - Movable
     - Rigid frame
     - Suspension
     - Cable stayed
   - Material:
     - Steel
     - Timber
     - Concrete (cast in place/precast)
     - Pre-stressed concrete
     - Masonry
   - Other:
     - Bearings Coating system
     - Special connections (pin-hangers)

c) Decks
   - Material:
     - Concrete (cast in place/precast)
     - Steel
     - Timber:
       - Parapets
       - Railings
       - Walkways
       - Appendages
   - Other:
o Drainage  
o Lighting  
o Utilities (hangers and connections)  
o Noise suppression systems  
o Joints  
o Pedestrian walkways

d) Waterway:  
   • Scour  
   • Channel protection

### 1.2.2 Tunnels and ancillary structures

a) Materials:  
   • Steel  
   • Concrete (cast in place/precast)  
   • Masonry  
   • Unlined  
   • Other  

b) Special subsystems:  
   • Drainage  
   • Floating slab  
   • Wall penetrations (doors, pipe, etc.)  
   • Ventilation shafts  
   • Other (standpipe, electrical, lighting, ventilation, etc.)

### 1.2.3 Culverts

a) Materials:  
   • Concrete (cast in place/pre-cast)Steel  
   • Masonry  
   • Other  

b) Waterway:  
   • Scour  
   • Channel protection

### 1.2.4 Retaining walls and barrier walls

a) Materials:  
   • Concrete (cast in place/pre-cast)  
   • Steel  
   • Masonry  
   • Mechanically stabilized earth (MSE)  

b) Waterway:  
   • Scour  
   • Channel protection

### 1.2.5 Special structures

a) Catenary structures  
b) Communication towers  
c) Passenger Emergency Exit Systems and Appurtenances
d) Other

2. Inspection implementation

2.1 Inspection procedures

Before beginning the inspection, the inspection team shall study the structure file and as-built plans carefully to determine locations and level of criticality for the inspection. In addition, an assessment of the following shall be made:

- the potential for fatigue damage based upon the loading history
- the fatigue-prone details
- records of damage or deficiencies
- records of past repairs

The following procedures shall be performed routinely but may be adjusted based on special requirements:

a) Verify dimensions and member sizes using thickness gauges to determine if there is section loss due to corrosion. If a bridge has been repainted, then corrosion-related section loss may not be obvious. Document deviations, modifications or repairs with an estimate of their age.

b) Concrete elements shall be sounded and checked for cracks, scaling, spalling or other deterioration that might indicate a loss in strength.

c) Check steel members for corrosion, cracking or deformities with particular emphasis on locations prone to fatigue, brittle fracture or stress corrosion. Perform dye-penetrant tests at suspicious locations.

d) Concrete decks shall be inspected and sounded, top and bottom, to identify delamination and moisture penetration.

e) Check devices that facilitate movement to ensure that they are functioning properly.

f) Bearings and deck joints are also to be checked. Document opening or position relative to ambient temperature. This data shall be used to identify excessive movement or frozen bearings.

g) Substructure units shall be sounded and checked for settlement. Probe foundations for scour and undermining.

Inspection safety is an important consideration. Procedures shall be carefully planned for each project. Inspectors shall be familiar with, and follow, OSHA regulations related to fall protection, underwater safety, confined-space restrictions and exposure to toxic materials around bridges, such as creosote and bird droppings, as well as other applicable regulations.

2.2 In-depth and fracture critical inspections

The inspection intensity is based on the criticality of the structural element. An in-depth inspection is a close-up, hands-on inspection of one or more structural members above or below water level to detect any deficiencies not readily visible using routine inspection procedures.

A fracture critical inspection applies to steel bridge components or any special structure with steel components that meet the definition of fracture critical members. Per the National Bridge Inspection
Standards (NBIS), a fracture critical member is a steel member in tension, or with a tension element, whose failure would probably cause a portion of or the entire bridge to collapse.

The objective of a fracture critical inspection is to mitigate the potential for fatigue-related failures. Fracture critical inspections shall include the identification of fracture critical members and the development of a plan for inspecting these members. Inspectors shall understand the importance of redundancy in a structure in order to identify these members, and also take into account the age of the bridge and material characteristics at the time it was constructed. In addition, the fracture critical inspection procedure shall include the following items:

a) Each rail transit system shall identify all fracture critical members, as defined by the NBIS, and maintain a fracture critical member file for each structure. If possible, this inventory shall establish which fracture critical members were fabricated in compliance with AASHTO's applicable requirements.

b) The rail transit system shall identify all the fatigue sensitive details throughout the transit guideway. The identified details shall be classified as fatigue sensitive based on AASHTO requirements, which include an evaluation based on the actual stress range and estimated number of cycles that each detail has been subjected to. This inventory and classification of fatigue sensitive details will require careful consideration, recognizing that some susceptible details may be excluded from the fatigue sensitive classification because they are subjected to low levels of stress or a small number of cycles. Also, the fatigue-sensitive determination is time-dependent, meaning that, as cycles accumulate, additional details may be reclassified as fatigue sensitive.

c) Using the compiled inventory of fracture critical members and fatigue sensitive details, a detailed, close visual inspection in the field shall be performed on these members. The inspection shall focus on tension zones of fracture critical members and fracture critical connections. All details identified as “prone to cracking,” such as details with a potential for fatigue damage, shall be checked very closely. The inspector’s view shall be clear, unobstructed, well illuminated and within an arm’s length of the structural member. The member shall be viewed from all exposed sides and all angles. Additional light, magnification and nondestructive testing equipment shall be used when needed. If special equipment or testing procedures are called for, then the inspectors shall be trained to use this equipment, or the inspection program shall include provisions to retain the services of certified specialists to perform the work.

d) Welded girders, insert plates, cover plate ends and unground welds are susceptible to fatigue crack initiation. Reentrant corners and web gaps can also initiate fatigue cracks. Inspectors shall recognize problems caused by secondary stresses such as out-of-plane bending at diaphragm and floor beam connections, particularly on skewed bridges. Other points of localized stress concentration and potential crack initiation are tack welds, intermittent nicks, scars and holes with rough edges.

e) Special attention shall be given to truss spans. Inspectors shall safely position themselves on truss spans so that members and connections may be examined from all angles. If debris is present, then the surface must be cleaned and scraped if necessary. Compression members shall be checked for buckling. Deformations, twisting or eccentricity is also to be documented. Tension members shall be checked for flaws, welding, tears, cracks or “necking down” of section. Each member and connection shall be checked for loose or missing bolts or rivets, for corrosion and section loss, and for collision damage. Inspector’s shall verify and record gusset plate thicknesses by using a combination of visual and ultrasonic testing during each inspection interval once corrosion is evident. It is important that all measurement locations be identified and located from reference points that are readily reestablished. If a suspicious problem is identified, but its significance cannot be determined with the equipment at
the disposal of the inspector, then appropriate follow-up testing and consultation with the rail transit system inspection program manager is required.

f) The inspection findings for fracture critical members and fatigue sensitive details shall be included in the corresponding inspection reports, which shall be distributed according to established documentation procedures.

g) AREMA fatigue standards may be utilized in lieu of AASHTO standards at the option of the transit system.

2.3 Inspection staff qualifications

2.3.1 Program Manager

The Program Manager shall administer the rail transit system's inspection standard and assign the responsibilities for structure inspection, reporting, and inventory.

a) Be a registered Professional Engineer in the state the structure is located in, or have 10 years of bridge (tunnel) and other structure inspection experience in a responsible capacity; and

b) Successfully complete a Federal Department of Transportation-approved comprehensive bridge (tunnel) inspection training course. For example, NHI Course 130055 -- Safety Inspection of In-Service Bridges qualifies as an acceptable comprehensive training course.

To remain qualified as a Program Manager, successful completion of a Federal Department of Transportation-approved “refresher bridge inspection training course” must be completed every 5 years.

2.3.2 Structures inspection team leader

The Inspection Team Leader is the individual in charge of the structural inspection team and is responsible for planning, preparing for, and performing field inspections:

1) Have the qualifications specified for a Program Manager listed above; or

2) Have five years bridge and other structure inspection experience and have successfully completed a FHWA-approved comprehensive bridge inspection course; or

3) Be certified as a Level III or IV Bridge Safety Inspector under the National Society of Professional Engineer's program for National Institute of Certification in Engineering Technologies (NICET) and have successfully completed a Federal Department of Transportation-approved comprehensive bridge inspection training course; or

4) Have all of the following:
   i. Bachelor's degree in engineering from a college or university accredited by or determined as substantially equivalent by the Accreditation Board for Engineering and Technology; and
   ii. Successfully passed the National Council of Examiners for Engineering and Surveying Fundamentals of Engineering examination; and
   iii. Two years of bridge and other structure inspection experience; and
   iv. Successfully completed a Federal Department of Transportation-approved comprehensive bridge inspection training course; or

5) Have all of the following:
   i. An associate's degree in engineering or engineering technology from a college or university accredited by or determined as substantially equivalent by the Accreditation Board for Engineering and Technology; and
ii. Four years of bridge and other structure inspection experience; and
iii. Successfully completed a Federal Department of Transportation-approved comprehensive bridge inspection training course.

6) The Team Leader for tunnel inspections must, at a minimum, be a registered professional engineer (P.E.). Additionally, the Team Leader must also meet the requirements as set forth in the National Tunnel Inspection Standards (NTIS).

A qualified Inspection Team Leader must be at the structure during each initial, routine, in-depth, fracture critical, and underwater inspection.

2.3.3 Inspection team

The inspection team shall have at a minimum, one person qualified as an Inspection Team Leader. All other inspectors must have successfully completed a Federal Department of Transportation-approved comprehensive bridge inspection training course.

2.3.4 Underwater inspector

Divers performing underwater inspections and evaluations shall be fully qualified by training and experience in evaluating the types of degenerative underwater structural and streambed conditions that can exist at given bridge locations.

Underwater bridge inspection diver must successfully complete a Federal Department of Transportation-approved comprehensive bridge inspection training course or other Federal Department of Transportation-approved underwater diver bridge inspection course.

Inspections made by divers not fully qualified as an Inspection Team Leader shall be limited to bridge situations where measurements, verbal descriptions, underwater photography, etc. can provide conclusive evidence of underwater conditions to an on-site fully qualified Inspection Team Leader.

2.4 Load rating/scour analysis

Load ratings and scour analysis are not required as part of a scheduled inspection for guide way structures. However, existing load ratings and scour analysis must be on file for each structure owned by the rail transit system. In addition, a structural load rating or scour analysis shall be performed if any of the following conditions exist:

a) Significant deterioration of the primary structural members or channel bottom is discovered during a visual inspection.

b) Current live loads (axle weight or configuration) are substantially different from the original design live load.

c) Undocumented structural modifications are discovered during inspection, which may potentially alter or inadvertently reduce the load-carrying capacity of a guide way.

The Program Manager will determine the need for, and will be in charge of any mandated load ratings or scour analysis. If a determination is made that load ratings or scour analysis are needed, then the analysis shall be prepared using the latest version of the rail transit system’s design criteria, AASHTO and /or AREMA as required. The completed load rating and scour analysis shall be referenced in the corresponding inspection report and shall be disseminated according to established documentation procedures.
2.5 Seismic
The requirements for seismic inspection are presented using an incremental two-step approach that, based on a rational assessment of seismic risk, shall accommodate the needs of each rail transit system.

Under the direction of the Program Manager, each agency shall perform an inventory in accordance with AREMA Guidelines, to determine the degree to which all the transit guide way structures are susceptible to seismic loads.

This inventory shall be compiled in a report that is disseminated according to the established documentation procedures.

Following the determinations made during the existing structure inventory, each owner shall prepare “Post-Seismic Event Operation Guidelines” in accordance with AREMA Guidelines. Once completed, this self-contained manual shall be readily available to the Program Manager, as well as operations and maintenance personnel, to be used as an immediate source of reference information.

2.6 Structural damage diagnosis techniques
The rail transit system shall have on staff, or contract for the services of, qualified personnel who perform routine visual inspections of structural elements. In the event that structural damage or failures are found through visual examination, additional testing may be required.

2.6.1 Nondestructive testing
Inspection teams shall routinely use nondestructive testing such as thickness measurement instruments to help determine loss of section and dye penetrants to help locate and define cracks in steel. All testing shall be performed per industry standards.

Other types of specialized nondestructive tests include use of specialized equipment, such as for ultrasonic or X-ray examination of steel members and welds.

2.6.2 Destructive testing
Destructive material testing may be required once a problem has been identified, and further study may be needed to determine its severity and extent. The Program Manager may direct destructive testing of structural components to predict or determine failure modes. Removing a sample of steel for lab tests to determine fatigue vulnerability or material properties would be an example of destructive testing. For concrete structures, destructive testing may include such tests as petrographic analysis or Windsor Probe testing.

2.7 Underwater inspection
If applicable, each rail transit system shall perform underwater structural inspection at no more than 60-month intervals or more frequently as determined by a condition of the substructure elements or scour vulnerability analysis outlined by applicable FHWA publications. Underwater inspections involve visually or tactually inspecting all the exposed underwater components of each bridge, utilizing appropriate tools and methods. This includes but is not limited to abutments, piers, footings, piles, fender systems and channel scour problems. This work shall be performed in conformance with applicable OSHA Regulations and as described in the FHWA “Bridge Inspector’s Reference Manual” and the “Underwater Bridge Inspection Manual”.

© 2016 American Public Transportation Association
Underwater inspections shall be performed on any qualifying structure where the water depth around any of the substructure units is normally greater than 1 m and inspection using hip boots is impossible or impractical because of water depth, current, soft bottom conditions, etc.

Underwater inspection reports shall contain pertinent information as required by the FHWA “Bridge Inspector’s Reference Manual” and the “Underwater Bridge Inspection Manual”.

3. Inspection controls

3.1 Frequency

Inspections shall be performed at intervals as indicated for the following structures. Additionally, special inspections shall be performed as directed by the Program Manager following extraordinary events such as major flooding, collisions, fire and seismic occurrences.

3.1.1 Bridges

Each bridge shall be routinely inspected at regular intervals at least once every 24 months.

Fracture critical members and fatigue sensitive details shall also be inspected at least once every 24 months following the detailed, close visual inspection procedure for a fracture critical inspection.

Certain types or groups of bridges will require inspection at an interval more frequent than once every 24 months. The intensity and frequency to which a bridge shall be inspected will be determined by factors such as age, state of maintenance and known deficiencies. The evaluation of these factors will be the responsibility of the Program Manager.

Bridge pier protection shall be inspected at regular intervals of at least once every 60 months.

3.1.2 Tunnels

Each tunnel, including penetrations such as doors and pipes, shall be inspected at regular intervals of 24 months or as defined in the NTIS. Certain tunnels may be inspected at regular intervals up to 48 months based on inspection findings and analysis that justify an increased inspection interval. At a minimum, the following criteria shall be used to determine the level and frequency of inspection based on an assessed lower risk, tunnel age, time from last major rehabilitation, tunnel complexity, traffic characteristics, geotechnical conditions, functional systems, and known deficiencies. Conversely, certain types of structures, such as old tunnels or underwater tunnels, may require more frequent inspection intervals. Such intervals shall be determined by the Program Manager but shall not exceed the duration specified in NTIS.

Ventilation shafts shall be inspected at intervals of at least once every 24 months. However, certain safety elements such as stairs, gratings at street level, spalled concrete areas, etc. shall be inspected more frequently, as determined by the Program Manager.

3.1.3 Culverts

Culverts, not otherwise classified as bridges or tunnels, shall be inspected at regular intervals of at least once every 60 months. The condition of the structure may require a more frequent inspection interval.
3.1.4 Retaining walls and barrier walls
Retaining and barrier walls shall be inspected at regular intervals of at least once every 60 months.

3.1.5 Special structures
Special structures, such as catenary structures and communication towers, etc., shall be inspected at intervals determined by the Program Manager.

3.2 Documentation
3.2.1 Structure and defect database
A computerized database consisting of the structural inventory and the inspection frequency, dates and condition rating of all structural elements that make up the various structures included in Sections 1.2 and 2.1 shall be maintained.

3.2.2 Inspection report format
A structural inspection report, which identifies the asset and documents the inspection, date, name of inspector and conditions of structural elements shall be maintained. See Appendix A, example of condition rating codes; and Annex B, for example of documentation forms. For sample tunnel inspection forms, see FWHA Highway and Rail Transit Tunnel Inspection Manual – Chapter 3.D.3

3.2.3 Engineering review
Inspection reports shall be reviewed by the Program Manager for final determination of condition and recommendation for mitigation as necessary. The Program Manager will be responsible to ensure that inspection reports are complete and consistent with good inspection practices.

3.2.4 Document control
Permanent files shall be established for all structures. Each file shall contain all pertinent drawings, inspection records, records of maintenance and repair work. Each Agency shall also have on file Master Lists of the following:
   a) All Agency owned structures
   b) Structures requiring fractural critical, underwater or special inspections
   c) Scour critical or reduced load ratings

3.2.5 Quality assurance/Quality control Program
A quality assurance/quality control program shall be provided to ensure that all structures are being adequately inspected at the required frequency and that complete documentation is being provided according to proper procedures.
4. Maintenance

4.1 Qualifications

4.1.1 General Qualifications
The transit system shall hire, or contract for service, individuals who are trained and competent to maintain structural systems at a level consistent with agency guidelines and performance criteria.

4.1.2 Safety
Individuals involved in the maintenance of structures shall be trained and qualified per the system safety plan of the rail transit system - minimally, as necessary, including but not limited to: fall protection provisions, confined space requirements, PPE, and Roadway Worker protection.

4.1.3 Welding
Welders, welding operators and tack welders shall be qualified based upon the certification requirements of ANSI/AWS D1.1 and D1.5 as required by application. Each transit system or contractor shall be responsible for the qualification of welders.

4.2 Maintenance Items

4.2.1 Coatings
The person in charge of structure maintenance shall establish a maintenance schedule for each type of coating system (paint, elastomeric membrane, etc.) based upon the life expectancy of the coating.

4.2.2 Drainage
Drainage system maintenance shall be performed on a schedule to ensure compliance with original design considerations and in response to deficiencies noted in inspection reports.

4.2.3 Joint sealing
Joint seals shall be maintained periodically to perform as designed and in response to deficiencies noted in inspection reports.

4.2.4 Bearings
Bearings shall be maintained per manufacturers’ recommendations and in response to deficiencies noted in inspection reports.

4.2.5 Sealing concrete
Sealing of concrete shall be scheduled to prevent corrosion or deterioration associated with water penetration and in response to deficiencies noted in inspection reports.

4.2.6 Cleaning
Structures shall be cleaned to prevent corrosion and drainage problems. This shall be done in accordance with a schedule established by the individual in charge of structure maintenance. Cleaning of structures for aesthetic purposes shall be determined by the rail transit system.
4.2.7 Vegetation
Vegetation shall be removed from structures in order to provide a clear view for the inspection of structural elements.

4.2.8 Stray current control
See APTA RT-S-FS-005-03, “Traction Electrification Stray Current/Corrosion Control Equipment Inspection and Maintenance.”

4.3 Frequency
A plan shall be established by the rail transit system for frequency of maintenance.

4.4 Documentation
When deteriorated structural elements are repaired or replaced, an entry indicating the new element condition shall be made in the inspection records called for in Section 3.2.1.

Each rail transit system shall establish policies to address routine maintenance needs identified in the inspection process.

Each rail transit system shall establish procedures to respond to the finding of critical conditions during an inspection that require immediate correction or note a significant change in condition.

4.5 Inspection/maintenance record review
Inspection records shall be reviewed periodically by the person in charge of structure maintenance to ensure compliance with the program and, in particular, that all high-priority defects have been addressed. Where possible, all records shall be maintained in an electronic database.
Related APTA Standards

- APTA RT-FS-S-005-03 “Traction Electrification Stray Current/Corrosion Control Equipment Inspection & Maintenance” (This document was previously numbered as APTA RT-S-FS-005-03)

References

This standard shall be used in conjunction with the most recent versions of the following publications:

Code of Federal Regulations:
- 23 CFR 650, Subpart C, National Highway Bridge Inspection Standards.
- 23 CFR 650, Subpart E, National Tunnel Inspection Standards.
- 29 CFR, OSHA Standards.
- 29 CFR, OSHA Standards, Subpart T.
- 49 CFR Part 237 Bridge Safety Standards
- 49 CFR Part 659, Rail Fixed Guideway Systems; State Safety Oversight

American Association of State Highway and Transportation Officials
- AASHTO Manual for Bridge Evaluation

American National Standards Institute and American Welding Society:
- ANSI/AWS D1.1.
- ANSI/AWS D1.5.

American Railway Engineering and Maintenance Association:
- AREMA Fatigue Standards.
- AREMA Manual for Railway Engineering, Chapter 9, Part 1, Section 1.2.
- AREMA Manual for Railway Engineering, Chapter 9, Part 1, Section 1.5.

Federal Highway Administration:
- “Inspection of Fracture Critical Bridge Members”
- “Manual for Moveable Bridge Inspection”
- “Manual on Uniform Traffic Control Devices”
- “Bridge Inspector’s Reference Manual”
- “Underwater Bridge Inspection Manual”
- “Highway and Rail Transit Tunnel Inspection Manual”
- “Specifications for the National Tunnel Inventory”

Transit Cooperative Research Program
Definitions

**bridge**: A structure built to span physical obstacles including, but not limited to a body of water, a valley, a road, or railway, for the purpose of providing passage over the obstacle.

**culvert**: A structure that typically allows water to flow under a road, railroad, trail, or similar obstruction. Typically embedded so as to be surrounded by soil, a culvert may be made from a pipe, reinforced concrete or other material.

**fixed structure**: A structure used by rail transit systems for the purpose of providing transit services.

**owner**: The legal entity that retains the right to construct and operate a transit system.

**program manager**: The individual in charge of the RTS program that has been assigned or delegated the duties and responsibilities for inspection, reporting and inventory of fixed structures. A licensed professional engineer who is authorized by the RTS to exercise engineering judgment; to make technical decisions with regard to the fixed transit guideway structures; and to direct qualified staff, engineering consultants or other qualified specialists to perform work. The Program Manager does not have to be a direct employee of the owner.

NOTE: The term program manager as referenced herein refers to a function title in accordance with 23 CFR 650 and not a position title.

**rail transit system**: The organization or portion of an organization that operates rail transit service and related activities. Synonyms: operating agency, operating authority, transit agency, transit authority, transit system.

**rail transit system engineer**: See Program Manager.

**scour**: Erosion of streambed or bank material due to flowing water; often considered as being localized around piers and abutments of bridges.

**spall**: An area of concrete that has broken, chipped or become pitted.

**team leader**: Individual in charge of an inspection team responsible for planning, preparing and performing field inspection of the fixed structure.

**tunnel**: An underground passageway for automobiles, trains, pedestrians, etc., completely enclosed except for openings for entrance and exit, commonly at each end.

Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APTA</td>
<td>American Public Transportation Association</td>
</tr>
<tr>
<td>AREMA</td>
<td>American Railway Engineering and Maintenance Association</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>FCM</td>
<td>fracture critical members</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
</tbody>
</table>
Summary of document changes

1. Document formatted to the new APTA standard format.
2. Sections have been moved and renumbered.
3. Definitions, abbreviations and acronyms have been moved to the back of the document.
4. Two new sections added: “Summary of document changes” and “Document history.”
5. Some global changes to section headings and numberings resulted when sections dealing with references and acronyms were moved to the end of the document and other cosmetic changes, such as capitalization, punctuation, spelling, grammar and general flow of text.
6. Document was previously numbered as APTA RT-S-FS-001-02 and changed to APTA RT-FS-S-001-02 Rev1.
7. Added catenary structures to the scope of the standard to ensure these critical structures are inspected and maintained properly.
8. Section 1.1 Added language to FRA regulations for those bridges that may apply.
9. Section 1.2.5 Expanded special structures to include passenger emergency exit systems and appurtenances
10. Section 1.3 ‘Load Rating’ to Section 2.4 as ‘Load Rating/Scour Analyses’.
11. Section 1.4 on ‘Fatigue’ deleted as a section and added to Section 2.2.(b) also because the topic appears in various other places.
12. Section 1.5 ‘Seismic’ moved to a new Section 2.5.
13. Added 2.0 ‘Inspection Implementation’ Section that incorporates and reorganizes inspection procedures, ratings, techniques etc.
14. New Section 2.2 ‘In-depth and fracture critical inspections’ added.
15. Reorganized Inspection Practices Section and subsections into two separate Sections (Inspection Practices & Inspection Implementation) in order to segregate the inspection practices/program from the inspection implementation.
16. Reworded section on 3.1.2 Tunnels to accommodate current inspection concerns for tunnels and allow for the inclusion of upcoming National Tunnel Inspection Standards.
17. Section 4.1.2 Safety qualifications expanded listing minimum, as necessary, safety related training/qualifications.
18. Revised various wording and sections to correspond with most current contents of the National Bridge Inspection Standards.
19. Modified the frequency duration from the number of years to number of months required between inspections.
20. Added the following new references: 23CFR 650, Subpart E National Tunnel Inspection Standards, 49 CFR Part 237, Bridge Safety Standards, 49 CFR Part 659, Rail Fixed Guideway Systems; State...

21. Added in definitions for bridge, culvert, Program Manager, Scour, Spall, Team Leader and Tunnel to conform to regulations and standard industry practice.

22. Miscellaneous minor editorial modifications for clarity.

23. Added example inspection forms as attachments.

24. Added standardized rating codes in Appendix A for structural elements conforming to the Bridge Inspection Standards.

Document history

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Working Group Vote</th>
<th>Public Comment/Technical Oversight</th>
<th>Rail CEO Approval</th>
<th>Rail Policy &amp; Planning Approval</th>
<th>Publish Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First revision</td>
<td>Nov 4, 2014</td>
<td>April 1, 2016</td>
<td>May 19, 2016</td>
<td>July 20, 2016</td>
<td>October 6, 2016</td>
</tr>
</tbody>
</table>
Annex A: (informative) - Example of condition rating codes

Description:

In order to promote uniformity between inspectors, these guidelines can be used to rate and code the structural elements. The condition ratings are used to describe the existing in-place structure as compared to the as-built condition. Condition codes should provide an overall condition of the entire component being rated. Coding shall not attempt to describe localized or normally occurring instances of deterioration or dis-repair.

The load carrying capacity will not be used in evaluating condition items. The fact that a bridge was designed for less than the current legal loads and may be posted shall have no influence upon condition ratings. Portions of bridges that are being supported or strengthened by temporary members will be rated based on their actual condition; that is, the temporary members are not considered in the rating of the item.

Completed bridges not yet open to traffic, if rated, shall be coded as if open to traffic. Even if the bridge is closed, rate each item without being influenced to the fact that the bridge is closed.

The determination of which of the following ratings apply to each of the items will be based on an evaluation of all the relevant factors and information included in the detailed inspection reports. The rating chosen for each of these items will, in effect, be a composite of all of the relevant factors.

<table>
<thead>
<tr>
<th>NA</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td><strong>Excellent Condition</strong></td>
</tr>
<tr>
<td>8</td>
<td><strong>Very Good Condition</strong> - No problems noted.</td>
</tr>
<tr>
<td>7</td>
<td><strong>Good Condition</strong> - Some minor problems.</td>
</tr>
<tr>
<td>6</td>
<td><strong>Satisfactory Condition</strong> - Structural elements show some minor deterioration.</td>
</tr>
<tr>
<td>5</td>
<td><strong>Fair Condition</strong> - All primary structural elements are sound but may have minor section loss. Cracking, spalling or scour.</td>
</tr>
<tr>
<td>4</td>
<td><strong>Poor Condition</strong> - Advanced section loss, deterioration, spalling or scour.</td>
</tr>
<tr>
<td>3</td>
<td><strong>Serious Condition</strong> - Loss of section, deterioration, spalling, or scour may have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.</td>
</tr>
<tr>
<td>2</td>
<td><strong>Critical Condition</strong> - Advanced deterioration of primary structural elements. Fatigue cracks in steel or shear</td>
</tr>
<tr>
<td>1</td>
<td><strong>&quot;Imminent&quot; Failure Condition</strong> - Major deterioration or section loss present in critical structural components or</td>
</tr>
<tr>
<td>0</td>
<td><strong>Failed Condition</strong> - Out of service - beyond corrective action.</td>
</tr>
</tbody>
</table>
Annex B: (informative) - Example of documentation forms

The following forms were developed by the Pennsylvania Department of Transportation (Penn DOT) and later adopted by the rail transit agency of the Port Authority of Allegheny County. These forms contain the minimum elements and is intended to provide guidance to rail transit agencies when developing their own forms.

a. Site Data
b. Bridge 1 Data
c. Abutment Data
d. Pier Data
e. Bridge 2 Data
f. Maintenance Needs Data
g. Retaining Wall Inspection Report Sheet 1
h. Retaining Wall Inspection report Sheet 2
i. Scour/Underwater Inspection Report Sheet 1
j. Scour/Underwater Inspection Report Sheet 2
### Site Data Form

**PAT Form D-450A**

**Site Data**

**BRIDGE MANAGEMENT SYSTEM**

**Bridge Inspection Report**

**BMS Updated**

by ______ Date ______

---

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of Sign</th>
<th>Required Sign</th>
<th>Near Advance</th>
<th>Bridge Site Near</th>
<th>Far Advance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Bridge Weight Limit</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>Except Combination</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>One Truck at a Time</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B22/B23</td>
<td>Vert. Clearance-On</td>
<td></td>
<td></td>
<td></td>
<td>See Sketch</td>
<td></td>
</tr>
<tr>
<td>B22/B23</td>
<td>Vert. Clearance-Und</td>
<td></td>
<td></td>
<td></td>
<td>See Sketch</td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>One Lane Bridge</td>
<td>Yes/No</td>
<td>(Opt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>Narrow Bridge</td>
<td>Yes/No</td>
<td>(Opt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>Hazard Clearance</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Opt)</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Key >**

OK: Signs properly installed  M: Signs Missing  D: Signs damaged

**Notes**

**Vertical Clearance Sign**

**On Feature:** <  

**Under Feature:** <  

**E26** Underclearance Appraisal  Controlling: Lateral  Vertical

**E28-A** Traffic Safety Features  (Subfields shown vertically)  Posted Speed Limit _____ mph

- Bridge Railing
- Transition
- Approach Guiderail
- Approach Rail Ends
- E28 Approach Alignment
- E15 Approach Roadway
  - Pavement
  - Drainage
  - Shoulders
- E14 Approach Slab
  - Bump at Bridge: Yes  No
- E19 Pavement Relief Joint
### Bridge 1 Data Form

**PAT Form D-450B**  
**Bridge Data**  
(2001)

**For PAT Roadways**  
**B01 Ref B27 ADT B28 ADT Year B30A ADTT %**

**Deck**  
**E25 Deck Geometry**  
**Table Controlling Values:**  
**B27/B34/B22 A31/B18**

**Design Exception granted?**

**E16 Deck Wearing Surface**

**E17 Deck**  
**Top**

**Underside**

**Expansion Joints**  
**C22 Expansion Joint Types**

**Deck Drainage**

**Superstructure**  
**E18 Superstructure**  
**See Sheet**

**For Additional Details.**  
**Form 491-J attached for FCM details Yes/No**

**Girders/Beams**

**Floorbeams**

**Stringers**

**Diaphragms**

**Truss Members**

**Portals/Bracing**

**Bearings (Type/Condition)**

**Abutment No. 1**

**Abutment No. 2**

**Piers**

**Drainage System (Below Deck)**

---

© 2016 American Public Transportation Association
## Abutment Data Form

**PAT Form D-450C Abutment Data**

**A01**

**E06**

**Inspection Date**

---

### NAB - Near Abutment (Use same notation as W09)

- **Backwall**
- **Bridge Seats**
- **Cheekwalls**
- **Stem**
- **Wings**
- **Footing**
- **Piles**

### Scour/Undermine

- **Yes**
- **No**

See Details on Form Sheet

---

### Settlement

---

### Embankment-Slope/Wall

---

### Wall Drainage

---

### FAB - Far Abutment (Use same notation as W09)

- **Backwall**
- **Bridge Seats**
- **Cheekwalls**
- **Stem**
- **Wings**
- **Footing**
- **Piles**

### Scour/Undermine

- **Yes**
- **No**

See Details on Form Sheet

---

### Settlement

---

### Embankment-Slope/Wall

---

### Wall Drainage

---
## Pier Data Form

**PAT Form D-450D**  
**Pier Data**  
**Inspection Date**  
**Substructure (Cont.)**

<table>
<thead>
<tr>
<th>Substructure</th>
<th>Pier/Bent Number</th>
<th>Caps</th>
<th>Cheekwalls</th>
<th>Columns/Stems</th>
<th>Footings</th>
<th>Piles</th>
<th>Scour/Undermine</th>
<th>Settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Seats</td>
<td>(Use same notation as W09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheekwalls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns/Stems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scour/Undermine</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Pier/Bent Number** (Use same notation as W09)

<table>
<thead>
<tr>
<th>Substructure</th>
<th>Pier/Bent Number</th>
<th>Caps</th>
<th>Cheekwalls</th>
<th>Columns/Stems</th>
<th>Footings</th>
<th>Piles</th>
<th>Scour/Undermine</th>
<th>Settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Seats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheekwalls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns/Stems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scour/Undermine</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bridge 2 Data Form

PAT Form D-450K

Bridge 2 Data

A01

E05

Inspection Date

(2001)

E17 Paint Condition

New Paint Y/N

If Yes:

Spot Zone Full

Revise item G01-G10

Interior Beam/Girder

Fascias

Splash Zone:Truss/Girder

Truss Bearings

Other

E21 Estimated Remaining Life (Super + Sub + Deck)

Recalculate IR/OR: Yes Due to: Deterioration New Wearing Surface Other

No Previous Ratings Dated are still valid

E28 Inventory Rating

E29 Operating Rating

E32 Rate Method

E33 Type Member

AASHTO E37 Spec E38 Manual

E30 Bridge Post Controlling: H HS ML80 Engineering Judgement

E22 Structural Condition Appraisal Based Upon Table 1 B27-ADT B30-IR

or E16-Super E18-Sub E20-Culvert

E01 Next Insp. Freq.

E02 Equip. Next Insp.

E03 Spec. Insp. Type

E07 By Insp.

Is bridge over water? Yes E20 = N Complete Forms D-450E through G

No E20 = N E19 = N E25 = N E31 = N

Notes:

Signature and Date:

© 2016 American Public Transportation Association
### Maintenance Needs Data Form

#### Approach Roadway Work

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement (Patch/Raise)</td>
<td>RDPAWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Repair</td>
<td>RDPUFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulders (Repair/Reconstr)</td>
<td>RDHSLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage - Off Bridge (Improved)</td>
<td>RDDBRN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On/Trans End (Rep/Imp)</td>
<td>RDSDELR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Limit Signs (Replace)</td>
<td>RDLCUGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut Brush to Clear Signs</td>
<td>RDBRUSH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Slab (Replace)</td>
<td>A744201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Cleaning - Rushing

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck</td>
<td>A743101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scupper/Down Spouting</td>
<td>B744301</td>
<td>1 2 3 4 5</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>Bearing/Bearing Seat</td>
<td>C743102</td>
<td>1 2 3 4 5</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>Steel Horizontal Surfaces</td>
<td>D743102</td>
<td>1 2 3 4 5</td>
<td>EB</td>
<td></td>
</tr>
</tbody>
</table>

#### Deck Joints - Expansion Joints

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reseal</td>
<td>A743301</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Repair/Reseal</td>
<td>B744101</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Compression Seal (Rep/Rehab)</td>
<td>B744102</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Modular Dam (Rep/Rehab)</td>
<td>C744102</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Steel Dams (Rep/Rehab)</td>
<td>E744102</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Other Types (Rep/Rehab)</td>
<td>E744103</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
</tbody>
</table>

#### Bridge Railings - Parapets

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Parapet (Rep/Repl)</td>
<td>RLGBPPR</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Guardrail (Rep/Repl)</td>
<td>RLBGTR</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Pedestrian (Rep/Repl)</td>
<td>RLCPEDN</td>
<td>N 1 2 3 O</td>
<td>LF</td>
<td></td>
</tr>
<tr>
<td>Median Barrier (Rep/Repl)</td>
<td>RLGBMDEB</td>
<td>L 1 2 3 4 5</td>
<td>LF</td>
<td></td>
</tr>
</tbody>
</table>

#### Deck Drainage

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scupper Grate (Replace)</td>
<td>DRNGRAT</td>
<td>1 2 3 4 5</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Drain/Scupper (Install)</td>
<td>B744401</td>
<td>1 2 3 4 5</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Downspouting (Rep/Repl)</td>
<td>C744402</td>
<td>N 1 2 3 O</td>
<td>EA</td>
<td></td>
</tr>
</tbody>
</table>

#### Bearings

<table>
<thead>
<tr>
<th>Item #</th>
<th>Location</th>
<th>Qty</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricate</td>
<td>A745501</td>
<td>N 1 2 3 O</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Steel (Rep/Repl)</td>
<td>A744501</td>
<td>N 1 2 3 O</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Expansion (Reset)</td>
<td>C745502</td>
<td>N 1 2 3 O</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Pedestal Seat (Reconstruct)</td>
<td>D745503</td>
<td>N 1 2 3 O</td>
<td>EA</td>
<td></td>
</tr>
<tr>
<td>Timber</td>
<td>A746601</td>
<td>1 2 3 4 5</td>
<td>EA</td>
<td></td>
</tr>
</tbody>
</table>

### MAJOR IMPROVEMENT NEEDS

<table>
<thead>
<tr>
<th>Year Needed</th>
<th>Type Work</th>
<th>Improvement Length</th>
<th>Bridge Width</th>
<th>Future ADT</th>
<th>Future ADT Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>F02</td>
<td></td>
<td>F04</td>
<td>F06</td>
<td>F10</td>
<td></td>
</tr>
</tbody>
</table>

### FOR COMPLETION BY REVIEW ENGINEER

#### Apply Protective Coating

| Deck/Parapet/ Sidewalk | A743401 | OK PARAP SW | SY | |
| Substructure | B744101 | N 1 2 3 O | F | |
| Construct Temporary | | | | |
| Support Pier | A745401 | N 1 2 3 O | F | |
| Piping/Gutter Crossing | B745401 | LT OL RT | EB | |
| Bridge | C745401 | LT OL RT | EB | |

### SCHEDULED MAINTENANCE

- **1** - High Priority, as soon as work can be scheduled.
- **2** - Priority, review work plan, adjust schedule if needed.
- **3** - Add to scheduled work.
- **4** - Routine structural, can be delayed until funds are available.
- **5** - Routine non-structural, can be delayed until programmed.

### MAJOR IMPROVEMENT NEEDS

- **0** - Prompt action required. (Inform Bridge Engineer before updating BMS)
<table>
<thead>
<tr>
<th>Retaining Wall Inspection Report Sheet 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAT Form D-488T1</td>
</tr>
<tr>
<td>BRIDGE MANAGEMENT SYSTEM</td>
</tr>
<tr>
<td>BMS Updated</td>
</tr>
<tr>
<td>(2001)</td>
</tr>
<tr>
<td>by _____ Date ______</td>
</tr>
</tbody>
</table>

| Retaining Wall Inspection Form D-488T1 |

<table>
<thead>
<tr>
<th>Structure Identification Number</th>
<th>Structure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>T08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspection By:</th>
<th>Weather Conditions:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>T10</th>
<th>Wall Use</th>
<th>T09</th>
<th>Insp Man Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>T13</th>
<th>Backfill - Condition Rating</th>
<th>Details on pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope Stability/ Settlement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface Drainage/Erosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetative Cover/Erosion Control</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T14</th>
<th>Wall Condition Rating</th>
<th>Details on pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structural Wall, Soldier Beams, etc.:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facing Panels, cribbing, etc.:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulging or Horizontal Displacement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall Joints</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stub Abutment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T15</th>
<th>Drainage - Condition Rating</th>
<th>Details on pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weep Holes: Number</td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td>Roadway Drainage Control:</td>
<td>Adequate</td>
</tr>
<tr>
<td></td>
<td>(Comment on Inlets/Outlets)</td>
<td>Inadequate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T16</th>
<th>Foundation - Condition Rating</th>
<th>Details on pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wall Base/Footing:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall Settlement/Stability/Tilting:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tie Backs/Anchors:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T17</th>
<th>Overall Condition</th>
</tr>
</thead>
</table>

© 2016 American Public Transportation Association
## Retaining Wall Inspection Report Sheet 2

**RETAINING WALL INSPECTION REPORT**

**PAT Form D-488T2 BRIDGE MANAGEMENT SYSTEM (2001)**

<table>
<thead>
<tr>
<th>Retaining Wall Inspection Form D-488T2</th>
<th>Structure Identification Number</th>
<th>Inspected By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A01</td>
<td></td>
</tr>
</tbody>
</table>

### MAINTENANCE ITEMS

<table>
<thead>
<tr>
<th>Maintenance Items</th>
<th>Item No.</th>
<th>Location</th>
<th>Unit</th>
<th>Est. Quantity</th>
<th>PR</th>
<th>D/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retaining Wall (REP/REPL)</td>
<td>RTWALLR</td>
<td>L.F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facing (REP/REPL)</td>
<td>RTFACNG</td>
<td>S.Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regrading</td>
<td>RTGRADE</td>
<td>L FW BW R</td>
<td>C.Y.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage (REP/REPL)</td>
<td>RTDRAIN</td>
<td>RW WH</td>
<td>E.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie Back Conn. (REP/REPL)</td>
<td>RTTIEBK</td>
<td>E.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### NOTES:

---

© 2016 American Public Transportation Association
### Scour/Underwater Inspection Report Sheet 1

**PAT Form D-488W1**  
**BRIDGE MANAGEMENT SYSTEM**  
**Scour/Underwater Inspection Report**

**Inspection By:**

**Weather Conditions:**

|-----|-------|-----------------|-----|-----------|-----|------------|

<table>
<thead>
<tr>
<th>W07</th>
<th>Stream Bed Material</th>
<th>Description</th>
</tr>
</thead>
</table>

|-----|---------------------|-----|-------------------|-----|-------------|

<table>
<thead>
<tr>
<th>W16</th>
<th>Name of Consultant</th>
<th>W17</th>
<th>Hired by</th>
</tr>
</thead>
</table>

#### Substructure Units Inspection Findings (Use Additional Sheets as Required)

<table>
<thead>
<tr>
<th>W09</th>
<th>W10</th>
<th>W11</th>
<th>W11-A</th>
<th>W11-B</th>
<th>W11-C</th>
<th>W11-F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W12</th>
<th>Inspection Findings</th>
</tr>
</thead>
</table>

© 2016 American Public Transportation Association  
Page 27 of 28
# Scour/Underwater Inspection Report Sheet 2

**PAT Form D-488W2 BRIDGE MANAGEMENT SYSTEM**  
**Scour/Underwater Inspection Report**  
Form D-488W2

**OBSERVED SCOUR RATING GUIDE**

<table>
<thead>
<tr>
<th>Rating</th>
<th>Item Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Change Since Last Insp.</td>
<td>Scour Hole</td>
</tr>
<tr>
<td>9</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>Minor</td>
</tr>
<tr>
<td>6</td>
<td>Minor</td>
</tr>
<tr>
<td>5</td>
<td>Medium*</td>
</tr>
<tr>
<td>4</td>
<td>Medium*</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
</tr>
</tbody>
</table>

**NOTES:**
Rating considerations given in highest to lowest level of importance from left to right.
* If an item is so marked, it cannot be given a higher ranking.
+ A higher ranking may be given if the unit is founded on component rock and no problems

## DETERMINATION OF RATING FOR BMS ITEM

<table>
<thead>
<tr>
<th>Substructure Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Since Last Insp.</td>
<td>Scour Hole</td>
<td>Debris Potential</td>
<td>Scourability</td>
<td>Opening Adequacy/Channel</td>
<td>Sediment</td>
<td>Alignment</td>
<td>Velocity/Stream Slope</td>
<td></td>
</tr>
<tr>
<td>W11-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Overall Observed Scour Rating**