What are the Artificial Intelligence Applications in Rail Transit?

Yousef Kimiagar

Vice President Transit Rail Systems Gannett Fleming

ykimiagar@gfnet.com +1 416 565 2562

RAIL CONFERENCE

Key Presentation Take-Aways

- Winds of Change
- Technology Trends
- Artificial Intelligence
- Train Control
- Energy Consumption
- Dynamic Optimization
- Predictive Maintenance
- Modeling/Simulation
- Survival Strategy

Intel Cofounder - Gordon Moore

We're doing things today that I thought were impossible a few years ago. For us to continue to be successful, we are going to do things that you now think are impossible.

Technology Trend

- Microprocessors
- Word processors •
- MS-DOS •
- Apple Mac •
- Windows •
- Internet ٠
- Cell phones
- DVDs
- Hybrid cars
- Google
- Youtube
- Facebook
- iPad •
- Driverless cars ٠
- 3D chips

I4.0 – New Ecosystem

Artificial Intelligence

- Simulation of human intelligence in machines
- Designed to address a specific problem
 - Deep blue, Alpha Go, Jeopardy, etc.
- Deluge of data (Zeta Bytes): 10²¹
- Massive processing power
- AI will transform many industries
 - but it's not magic

AI Timeline

- Over 60 years history
- Alan Turing 1950
- John McCarthy 1955
- Deep Blue 1977
- Roomba 2002
- Siri 2011
- Watson -2011
- Alexa 2014
- Alpha Go (2¹⁷⁰) 2017

Source: Digital Wellbeing

APTA Rail Conference 2019

AI Branches

ANI - Artificial Narrow Intelligence

AGI - Artificial General Intelligence

ASI < • Artificial Supper Intelligence (Singularity)

APTA Rail Conference 2019

IoT & Big Data

Internet of Things - number of connected devices worldwide 2015-2025

Source: BusinessWire

Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions)

IoT in global railway industry: \$30 billion in the next 15 years

APTA Rail Conference 2019

Breakthroughs

Hardware	• N • 1 • 3	Moore's Law: Transistors in a chip doubling/2 years 10 nm pushing the limits 3D chips				
		Processing Speed	ProcessMHz	sing speed to GHz		
				Analytics	• AI	
	/	APTA Rail (Conference 2019			12

IBM Watson Cloud Based Platform

Railway Digitalization

Smarter / More Sustainable Trains

Faster and More Flexible Manufacturing/Testing

Extended Factory Boundaries

Condition Monitoring - Predictive Maintenance Reduced Time / Cost

Predicting Delays and Service Disruptions

Creating Integrated Ecosystem

Cognitive Technologies – Responsive - Agile

Deterministic - Probabilistic

- AI:
 - Algorithm, mathematical model or software
 - Can learn what to do to improve performance
 - Time based on its own past performance
- Deterministic: Full understanding of the desired software behavior
- Probabilistic: Basic neural math and huge processing power

Train Control

SILO: non-safety

- Could be Probabilistic
- Al Based:
 - Arrival time
 - Timetable
 - Ride comfort
 - Train regulation

	5	SIL3	SIL4	×	×	×
licy.	4	SIL2	SIL3	SIL4	х	Х
iant	3	SIL1	SIL2	SIL3	SIL4	Х
Free	2	•	SIL1	SIL2	SIL3	SIL4
	1			SIL1	SIL2	SIL3
		1	2	3	4	5
Severity of Consequence						

SIL4: safety critical (max hazard 10⁻⁹)

- Must be Deterministic
- AI Assisted:
 - No direct control
 - Advisory role to SIL4
 - Position
 - Acceleration
 - Safe braking
 - Interlocking

CBTC + SILO AI

Figure 1 – a possible application of artificial intelligence in automatic train control.

Source: IRSE News 258: Alexandre Pires

Enhanced ATP

4Tel / University of Newcastle Robotics (Research)

- Driverless Car Technologies
 - Artificial Intelligence
 - Deep Machine Learning
- Safety Enhancement
 - Hazards Detection
 - Signal Aspect Detection
 - Level Crossing

Source: 4Tel

- Driver Advisory Systems
 - Ontrack obstacle detection
 - Optimize human intervention for sensitive decisions impacting operation

From Assisted to Autonomous

Autonomous LRV in Potsdam, Germany

Source: Siemens Mobility

• Three stage to fully autonomous operation

- Simulator & real environment testing
- Obstacle detection
- Improve safety increase capacity
- Improve energy consumption

Green CBTC

• Intelligent scheduling

Source: Thales

- Speed optimization
- Maximize coasting
- Align trains for maximizing regenerative braking efficiency
- Create driving profiles & computerized instructions
- Efficiency gains 15% reduction in energy consumption
- Smoother operations reduced wear on track and trains
- Energy control adjust peak energy demand spikes

Future Generations

- Thales 2033 Intelligent Railway Network
- Data and information processed in the cloud
- Cloud based automatic train control system
- Optimized reliability and availability
- Sensory data collection
- Predictive maintenance

Timetable Synchronization & Optimization

- Beijing subway network case study
- Time-dependent passenger demand-driven timetable synchronization & optimization
- Optimize travel time in a network

TRB Journal 2018

 Adjusting departure times, running times, stopping times, and headways of all trains on each line

• Multi-objective - Pareto optimum schedules

Timetable Synchronization & Optimization

- Considering infrastructure capacity, passenger satisfaction, cost optimization
- AI Techniques:

TRB Journal 2018

- Neural networks
- Genetic algorithms (GA)
- Simulated annealing
- Tabu search algorithms

Item	Initial value (min)	Optimized value (min)	Percent reduction (%)
Total travel time	296701	275513	7.14
Waiting time	92134	85783	6.89
Transfer waiting time	26630	23551	11.56

A Fault Tolerant Approach

- Complex station with terminus platform
- Multiple routes for operation of high and low speed trains
- Similar pattern of improvement in capacity, operation robustness, punctuality
- Changes to track layout and/or locations of signal boxes fault tolerant rules
- AI methods used to optimize timetables in the implementation of the fault tolerant rules

Source: University of Salford in collaboration with the Institute for Transport Studies at the University of Leeds.

IBM Smarter Rail

- One mile speed increase saves
 - 5,000 freight cars
 - 250 locomotives
- Dynamic scheduling
- Surveillance of track and infrastructure
- Predictive maintenance
- Integration with road, sea, and air travel

GE Movement Planner

- GE's RailEdge[®] Movement Planner breakthrough
- Predicts patterns in train traffic
- Reduces environmental impact (1t/486mi/1g)
- Increases railroad capacity, velocity and efficiency
- Increases average network speed of trains 10-20%

US freight doubles in 25 years Every mile speed increase \$200m CapEx savings

AI Optimized Simulation Modeling

- Machines can learn more than a radiologist lifetime experience in one day
- Machine can be trained to learn from thousands of transit simulations
- Construct models using algorithms that learn from data and update in real time
- Learn from past predictions, outcomes and errors
- Optimization and calibration in virtual world

Prediction & Prevention

- Records locomotive and video data, takes inputs from different sources/devices, and makes it immediately available
- Real time locomotive status
- Advanced analytics
- Artificial intelligence
- Machine learning
- Live visual intelligence
- Real time status
- Early identification health issues
- Increased safety

Source: Wi-Tronix

Decreased maintenance costs

SNCF – Condition Based Asset Management

- Network of 30,000 kilometers railway
- 15,000 daily train runs
- Ridership increased 50% in the last 10 years
- Started more than a decade ago:
 - IBM Watson AI
 - Remote sensors: vibration, temperature, pressure, etc.
 - Field and onboard equipment
 - Automatic alerts

Source: OSIsoft

- Datapred algorithms
- Sequential machine learning
- Real time data processing

Machine Vision/Learning

- Since 2002 (Nebraska, Iowa and Arkansas)
- Thousands of Sensors
- Cameras, LIDARs, Laser
- 50,000 Images/Sec
- 360 Laser View
- Machine vision
- Machine learning
- Maintenance schedule

Source: UP

- Increased safety
- Reduced costs

Railcar Inspection Portal - rip®

- Connected Intelligence (AI/ML/NN)
- Truevue360 AI division
- Intelligent 360° imagery
- Situational awareness inspection processes & security
- CN portals Winnipeg:
 - Machine vision

Source1: duostech Source2: duostech

• Predictive analytics

Strategy to Survive the Digital Disruption

- People are the Real Key to Digital Transformation
- Digital disruption is primarily about people
- Effective digital transformation involves changes to organizational dynamics
- Cultural shift to more agile, risk tolerant, and experimental

Source: MIT Research

- Digital maturity with ability to take advantage of opportunities offered by the new technology
- Cultivating a digital environment, enabling intentional collaboration, fostering experimental mindset

TECHNOLOGY DIGITAL TRANSFORMATION GERALD C. KANE, ANH NGUYEN PHILLIPS, JONATHAN R. COPULSKY, AND GARTH R. ANDRUS

THE

Visions

Technology is no longer the constraint to achieving goals, we are constrained by our imagination and a supporting business case

Smarter and more sustainable trains will be designed, tested, and calibrated in a virtual environment, and factory boundaries will extend to customer sites

"Status quo is more dangerous than the unknown"

John Kotter - Harvard Business School

Interconnectedness, collaboration and partnership is creating an ecosystem of values sharing industry knowledge and innovation Technology typically is rarely inherently sustaining or disruptive; it depends upon how you deploy it in the market place that determines its disruptiveness." Clayton Christensen - Harvard Business School

THANK YOU

YOUSEF KIMIAGAR, MMSc., P.Eng, PMP, FIRSE

Vice President Transit Rail Systems Gannett Fleming

ykimiagar@gfnet.com +1 416 565 2562

APTA Rail Conference 2019