11. APTAPR-M-S-011-99
Standard for Compressed Air Quality for Passenger Locomotive and Car Equipment

Approved March 4, 1999
APTA PRESS Task Force

Authorized March 17, 1999
APTA Commuter Rail Executive Committee

Abstract: This Safety Standard defines the minimum quality of the compressed air for air brake and auxiliary pneumatic systems on passenger locomotives and cars. This safety standard provides a uniform basis for testing and measuring the quality of compressed air.

Keywords: air dryers, air supply system, air quality

Copyright © 1999 by The American Public Transportation Association
1666 K Street, N. W.
Washington, DC, 20006, USA
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of The American Public Transportation Association
Participants

The Air Quality Working Group of the APTA PRESS Mechanical Committee prepared this standard. Members of this working group who participated in the preparation of this document were:

Jason Lipscomb, Chair

David Carter
Brian Cunkelman
Charles Florian
Greg Gagarin

Ken Hesser
Christopher J. Holliday, P.E.
Paul Jamieson

At the time that this standard was completed, the PRESS Mechanical Committee included the following members:

Dave Carter, Chair

Asuman Alp
Gordon Bachinsky
Gilbert Bailey
R. Bailey
Walter Beard
George Binns
B.A. Black
Chris Brockhoff
Dave Brooks
Mark Campbell
Gary Carr
David Carter
John Casale
Al Cheren
George A. Chipko
Roger Collen
Richard Conway
Jack Coughlin
Tim Cumbie
Richard Curtis
Greg Dvorachak
Ed Deitt
Terry Duffy
James D. Dwyer
Magdy El-Sibaie
John Elkins
Rod Engelbrecht
Ronald L. Farrell
Andrew F. Farilla
Benoit Filion
Chuck Florian
Matt Franc
Greg Gagarin
John Goliber
Jeff Gordon
Thomas Grant
Harry Haber
Francois Henri
Ken Hesser

Chris Holliday
Cornelius Jackson
Paul Jamieson
James Jewell
Joe Kalousek
Bob Kells
Kevin Kesler
Paul Kezmarsky
Sunil Kondapalli
John Kopke
Frank Lami
Bob Lauby
Rick Laue
John Leary
H. B. Lewin
Jason Lipscomb
Ben Lue
William Lydon
Frank Malardi
George Manessis
Valerie Marchi
James Martin
Tom McCabe
Thomas McDermott
Lloyd McSparran
Cornelius Mullaney
Ed Murphy
Dak Murthy
Larry Niemond
Frank Orioles
James Parry
George Payne
Tom Peacock
John Pearson, Jr.
Ian Pirie
Richard Polley
John Posterino
Chuck Prehm
Alfred Pucci

John Punwani
Jim Rees
Jack Reedy
Al Roman
John Rutkowski
Tom Rusin
Radovan Sarunac
Fred Schaar
Dave Schanoe
Pete Schumacher
Kevin Simms
Tom Simpson
Mark Stewart
James Stoetzel
Philip M. Strong
Chris Studcart
Ali Tajaddini
Joe Talafous
Richard Trail
Mike Tosino
Ron Truitt
Tom Tsai
Richard Vadnal
David H. VanHise
John Wagner
Rich Walz
David Warner
Douglas Warner
Herbert Weinstock
Charles Whalen
Brian Whitten
James Wilson
Bruce Wigod
Werner Wodtke
Steve Zuiderveen
Clifford Woodbury, 3rd
Eric Wolf
Alan Zarembski
John Zolectron
Contents

1. Overview ... 11.3

1.1 Scope .. 11.3

2. References ... 11.3

3. Definitions ... 11.3

4. Qualification testing .. 11.4

4.1 Test objective .. 11.4
4.2 Air quality criteria .. 11.4

5. Periodic inspection and testing ... 11.4

5.1 Test objective .. 11.4
5.2 Air quality criteria .. 11.5

6. Method for testing and measuring air quality .. 11.5

6.1 Qualification testing .. 11.5
6.2 Periodic testing ... 11.6

Annex A (informative) Bibliography ... 11.9
Standard for Compressed Air Quality for Passenger Locomotive and Car Equipment

1. Overview

In pneumatic fluid power systems, power is transmitted and controlled by pressurized air within an enclosed circuit. For safe and reliable operation, rail passenger air brake systems require installation of an air supply system to compress ambient air, to remove water vapor, oil content, and particles, and to prevent condensation within pneumatic system components.

The design of the air supply system needs to take into consideration all of the major components, including the compressor, the air dryer, oil separators, condensate collectors, reservoirs, and other functional components as part of the “Air Supply System”. Only when the performance of all of the components in the air supply system are properly coordinated can the quality of the final compressed air output be guaranteed for a safe and reliable pneumatic system.

1.1 Scope

This safety standard defines the minimum quality criteria of compressed air for air brake and auxiliary pneumatic systems (including any external air supply used to charge/maintain the train air system) on new and existing passenger locomotives and cars in normal operating environments. This safety standard provides a uniform basis for testing and measuring the quality of compressed air.

The passenger rail industry phased this standard into practice over the six-month period from July 1 to December 31, 1999. The standard took effect January 1, 2000.

2. References

ASME B40.1, Gauges—Pressure Indicating Dial Type—Elastic Element, 1991

3. Definitions

3.1.1 dew point: Temperature at which water vapor begins to condense.

3.1.2 dew point depression: The difference between inlet ambient temperature and outlet dew point temperature.

\[(T_{ambient} - T_{outlet dew point})\]

3.1.3 temperature: A specific degree of hotness or coldness as indicated on a standard scale as measured with a dry bulb type thermometer, unless otherwise noted.
4. Qualification testing

4.1 Test objective

The air supply system qualification test will be performed on the first production air supply system, at a test laboratory, with test equipment as defined by section 6.1.2 and air inlet conditions as defined in section 6.1.1. The purpose of the test is to verify the proper operation of the air supply system and to demonstrate compliance with section 4.2. Prior to conducting any measurements of the air supply system, follow the guidelines for qualification testing per section 6.1.3.

4.2 Air quality criteria

4.2.1 Temperature

The outlet air temperature of the air supply system shall be no more than 15 °F (8.3 °C) above the ambient air temperature.

4.2.2 Oil content

The outlet oil content of the air supply system (including liquid and vapor) shall not exceed 5 ppm by weight.

4.2.3 Solid content

The outlet solid particle mean size of the air supply system shall not exceed 10 microns with an absolute size of 40 microns. The maximum particle concentration shall be not more than 5 mg/m³.

4.2.4 Dew point depression

The outlet dew point depression shall not be less than 30 °F (16.7 °C) throughout the entire operating cycle of the air supply system.

5. Periodic inspection and testing

5.1 Test objective

Periodic inspection and maintenance of the air supply system shall be performed per the manufactures recommendations to verify proper operation.

Periodic testing of the air supply system installed on passenger locomotives and cars shall be performed per section 6.2 at regularly scheduled intervals, not to exceed 368 days, on a random sample basis, resulting in a statistically significant sample which demonstrates compliant air quality, per section 5.2, for 95% of the operating fleet, or when a major component has been completely overhauled, replaced, or repaired. If compliance is less than 95%, the sampling interval shall be reduced until 95% compliance is achieved. If compliance exceeds 95%, the sampling interval may be increased up, to but not to exceed 368 days.
All external air supply systems used to charge or maintain the train air system shall be tested in accordance with section 6.2 at regularly scheduled intervals, not to exceed 368 days, to demonstrate compliant air quality per section 5.2.

In cases where regularly scheduled intervals coincide with the manufacturer recommended preventative maintenance intervals, the test shall be performed just prior to the preventative maintenance activity. When the design of the air supply system has been changed from the original design configuration, it shall be tested in accordance with section 6.1.

5.2 Air quality criteria

5.2.1 Temperature

The outlet air temperature of the air supply system shall be no more than 15 °F (8.3 °C) above the ambient air temperature.

5.2.2 Dew point depression

The outlet dew point depression shall not be less than 25 °F (13.9 °C) throughout the entire operating cycle of the air supply system for ambient temperatures at or below 100 °F (37.8 °C). For all ambient temperature conditions above 100 °F (37.8 °C), subtract one degree from the dew point depression requirement for each one degree above 100 °F (37.8 °C).

Example: If the ambient temperature is 110 °F (43°C), the dew point depression requirement would be 15 °F (-9°C).

6. Method for testing and measuring air quality

6.1 Qualification testing

6.1.1 Test scope

The air supply system shall be tested in a laboratory environment operating with ambient conditions of 100 °F (37.8 °C), 14.7 psig (1.01 bar) and a minimum relative humidity of 36%. The test shall demonstrate that the air supply system conforms to all requirements specified in section 4.

6.1.2 Test equipment

Test equipment shall be of laboratory quality and currently calibrated per the manufacturer’s specifications.

6.1.3 Test procedure

6.1.3.1 General

Ensure the unit is in its proper operating condition prior to beginning of the test. All adjustments are to be made before starting the test. No adjustments are to be made to the air supply system during any test run.
Establish a constant flow rate that will keep the air supply system running continuously within the normal operating pressure range of the air supply system. Operate the system at that steady state condition for a sufficient period to stabilize outlet compressed air conditions prior to taking measurements. Stabilization shall be considered achieved when the arithmetic average of the output compressed air dew point as recorded at regular observation intervals show duplicate results within ±3.6°F (±2°C).

Take and record observations, as illustrated in Figure 1, at the approximate center of the outlet air stream at least 10 pipe diameters away from any restriction or flow control device. Take readings at regular intervals to permit definition of characteristics of the air supply system to demonstrate compliance with section 4.

Note: When testing an air supply system incorporating a single tower air dryer, stabilization must be achieved by cycling the compressor at fixed intervals, which shall not be changed during the test.

6.1.3.2 Ambient temperature

Measure the ambient air temperature at the air inlet to the air supply system.

6.1.3.3 Outlet temperature

The outlet air temperature shall be measured in the approximate center of the outlet air stream at or after the main reservoir.

6.1.3.4 Oil content

The oil content shall be measured in the approximate center of the outlet air stream at or after the main reservoir.

6.1.3.5 Solid content

The particle size and concentration of solid content shall be measured in the approximate center of the outlet air stream at or after the main reservoir.

6.1.3.6 Outlet dew point

The outlet dew point shall be measured in the approximate center of the outlet air stream at or after the main reservoir. Determine the dew point depression as follows: Ambient Temperature minus outlet dew point temperature equals dew point depression.

6.2 Periodic testing

6.2.1 Test scope

The air supply system shall be tested as installed. The test shall demonstrate that the air supply system conforms to all requirements specified in section 5.
6.2.2 Test equipment

All pressure gauges used during the test shall be an ASME Grade 2A gauge or equivalent as specified by ASME B40.1. The gauge must be calibrated as specified by ASME requirements. Dew point and temperature measuring instruments shall be accurate and certifiable to within ±1.8° F (±1° C) in the range the measurements are taken. The instruments shall be calibrated to the manufacturer’s specifications.

6.2.3 Test procedure

6.2.3.1 General

Ensure the unit is in its proper operating condition prior to beginning of the test. All adjustments are to be made before starting the test. No adjustments are to be made to the air supply system during any test run.

Establish a constant flow rate that will keep the air supply system running continuously within the normal operating pressure range of the air supply system. Operate the system at that steady state condition for a sufficient period to stabilize outlet compressed air conditions prior to taking measurements. Stabilization shall be considered achieved when the arithmetic average of the output compressed air dew point as recorded at regular observation intervals show duplicate results within ±3.6° F (±2° C).

Whenever possible, isolate the friction brake equipment and other auxiliary systems downstream of the main reservoir(s) to prevent inconsistent results.

Take and record observations, as illustrated in Figure 1, at the approximate center of the outlet air stream at least 10 pipe diameters away from any restriction or flow control device. Take readings at regular intervals to permit definition of characteristics of the air supply system to demonstrate compliance with section 5.

When testing an external air supply unit, measurements shall be taken at the point of connection to rail equipment.

Note: When testing an air supply system incorporating a single tower air dryer, stabilization must be achieved by cycling the compressor at fixed intervals, which shall not be changed during the test.

6.2.3.2 Ambient temperature

Measure the ambient air temperature at the air inlet to the air supply system.

6.2.3.3 Outlet temperature

The outlet air temperature shall be measured in the approximate center of the outlet air stream at or after the main reservoir.

6.2.3.4 Outlet dew point

The outlet dew point shall be measured in the approximate center of the outlet air stream at or
after the main reservoir. Determine the dew point depression as follows: Ambient Temperature minus outlet dew point temperature equals dew point depression.

Figure 1

Typical Test Configuration
Annex A

(informative)

Bibliography

[B3] SAE J1649/1 - Compressed Air for General Use, Part 1: Contaminants and Quality Classes